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ABSTRACT

Microarray experiments can generate enormous amounts of data, but large datasets are usually inherently
complex, and the relevant information they contain can be difficult to extract. For the practicing biologist,
we provide an overview of what we believe to be the most important issues that need to be addressed when
dealing with microarray data. In a microarray experiment we are simply trying to identify which genes are
the most “interesting” in terms of our experimental question, and these will usually be those that are either
overexpressed or underexpressed (upregulated or downregulated) under the experimental conditions. Analy-
sis of the data to find these genes involves first preprocessing of the raw data for quality control, including
filtering of the data (e.g., detection of outlying values) followed by standardization of the data (i.e., making
the data uniformly comparable throughout the dataset). This is followed by the formal quantitative analysis
of the data, which will involve either statistical hypothesis testing or multivariate pattern recognition. Statis-
tical hypothesis testing is the usual approach to “class comparison,” where several experimental groups are
being directly compared. The best approach to this problem is to use analysis of variance, although issues re-
lated to multiple hypothesis testing and probability estimation still need to be evaluated. Pattern recognition
can involve “class prediction,” for which a range of supervised multivariate techniques are available, or “class
discovery,” for which an even broader range of unsupervised multivariate techniques have been developed.
Each technique has its own limitations, which need to be kept in mind when making a choice from among
them. To put these ideas in context, we provide a detailed examination of two specific examples of the anal-
ysis of microarray data, both from parasitology, covering many of the most important points raised.
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INTRODUCTION

THE RECENT PUBLICATION of the malarial genome sequence
(Gardner et al., 2002), along with the current efforts to se-

quence the genomes of many other major protozoan pathogens,
represents an important historical landmark (reviewed by Ellis
et al., 2003). One of the most important outcomes of this era
is the opportunity to define and understand the entire genetic
organization of these taxa and to analyze gene expression dur-
ing their complex life cycles. The enormous amount of sequence
data being put into the public domain is daunting; nevertheless,
it requires, if not demands, attention be given to methods of
data analysis.

Microarray analysis is one technology available that allows
the potential to profile gene expression on a genome-wide scale
(Schena et al., 1995), and only recently has it been applied to
the analysis of gene expression in parasitic organisms (Hay-

ward et al., 2000; Blader et al., 2001; Mamoun et al., 2001;
Matrajt et al., 2002; Rathod et al., 2002; Singh et al., 2002).
Microarray technology is attractive for application to para-
sitology for several reasons. In the first instance, the increasing
amount of sequence data available facilitates the production of
microarrays. Second, the ability to analyze changes in gene ex-
pression during transitions from different life-cycle stages of
parasites presents the opportunity to view globally the nature
of the changes occurring, and so facilitates the raising of hy-
potheses to explain the differentiation pathways. Third, the po-
tential to analyze both parasite and host responses under the
same experimental conditions represents an unsurpassed
method to investigate parasite–host interactions.

Microarray experiments can thus generate enormous
amounts of data, which is a relatively recent phenomenon in
biology but has been traditionally more common in fields such
as physics and chemistry. Unfortunately, this potential bounty
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comes at a cost. Large datasets are usually inherently complex,
and the relevant information they contain can therefore be dif-
ficult to extract. More to the point, biologists are often not ex-
perts in mathematics (in many cases that is admittedly why they
became biologists in the first place), and they are therefore
prone to either misuse or even abuse mathematical analyses.
Analysis of microarray data is thus a potential minefield, with
the possibility of the data analyses being too complex to either
perform properly or to understand. There may be as much think-
ing and time required for data analysis as there is for all other
parts of the experiment put together.

Many biologists seem to want data analysis to be like a lab-
oratory protocol—a series of steps that, if followed faithfully,
guarantee to produce the correct answer to their experimental
question. Unfortunately, that is rarely possible. Data analysis
involves detecting and displaying whatever patterns are pres-
ent in the data, and you don’t necessarily know exactly what
these patterns are beforehand.

What is needed is the most suitable method for highlighting
the patterns in each particular situation. So, data analysis can
often be a form of trial and error, where several potentially ap-
propriate analyses are tried and their results are evaluated. It
can be a very big mistake habitually to follow a series of pre-
defined data analysis steps, as this will only be an effective
strategy if they just happen to reveal the true answer.

However, it is not all gloom and doom. In a microarray ex-
periment we are simply trying to identify which genes are the
most “interesting” in terms of our experimental question, and
these will usually be those that are either overexpressed or un-
derexpressed (upregulated or downregulated) under the exper-
imental conditions being studied. Conceptually, therefore, there
is nothing new in the analysis of microarray data. It is always
worthwhile for biologists to learn as much as possible about
their data analyses (Leung, 2002), and so here we provide an
overview of what we believe to be the most important issues
for dealing with microarray data.

Our aim is to provide an introduction to each of a broad range
of topics that have arisen in the data analysis of microarray stud-
ies, hoping to put them into context for you. Therefore, we do
not provide a lot of details about the various methods that we
cover, referring instead to the pertinent primary literature. A
more detailed discussion of many of the issues can be found in
the introductory books by Knudsen (2002) and Baldi and Hat-
field (2002), with a briefer overview provided by Smyth et al.
(2002). Several important reviews about specific aspects of mi-
croarray data analysis are mentioned at the appropriate places
below. Two specific examples of the analysis of microarray
data, covering many of the most important points raised in the
following sections, are provided in the final section. Most of
what we have to say applies to both complementary DNA ar-
rays and oligonucleotide arrays (see Tefferi et al., 2002), but
we concentrate on the former technology.

The analysis of gene expression data collected using mi-
croarrays involves two distinct issues: (1) preprocessing of the
raw data—this answers the question “How do I ensure that I
have high-quality data?”; and (2) quantitative analysis of the
data—this answers the question “Having got high-quality data,
how do I now answer my experimental question?”

Preprocessing involves filtering of the data (e.g., detection
of outlying values) followed by standardization of the data (i.e.,

making the data uniformly comparable throughout the dataset).
Quantitative analysis involves the assessment of mathematical
patterns in the data, which we subsequently interpret as having
biological meaning. This analysis will involve one or both of:
(a) statistical hypothesis testing; and (b) multivariate pattern
recognition.

There are fundamental differences between these two types
of data analysis, mostly related to the distinction between uni-
variate and multivariate data. For univariate data analysis, we
examine one mathematical pattern at a time (e.g., we might as-
sess the pattern shown by each gene separately), while for mul-
tivariate data we are examining common patterns (e.g., we as-
sess whether there is a single common pattern shown by a large
group of genes). You might like to think of univariate analysis
as a reductionist approach to studying the patterns and multi-
variate analysis as a holistic approach to analysis. The mathe-
matical techniques developed for the analysis of univariate and
multivariate data are quite different, and the purposes to which
they are put can be quite distinct. These issues are thus treated
separately in the following sections.

In this review, the value of a single piece of data collected
on a single entity is called an “observation.” A collection of ob-
servations in an experiment is called a “sample,” while a “pop-
ulation” is all of the observations that could have been included
in the experiment. The type of characteristic that is being mea-
sured is called a “variable,” and the entity on which the char-
acteristic is measured is called a “sampling unit.” In microar-
ray studies (Fig. 1) the observations will be the measured
expression levels. There will be many variables, which are usu-
ally genes or expressed sequence tags (ESTs). There will be
one or more sample units, which will be arrays subject to ex-
tractions from a single or several experimental conditions (e.g.,
different tissues, a time sequence of development, different ex-
perimental manipulations). This imbalance between the many
variables and the relatively few sampling units can create prob-
lems for data analysis; indeed, this is likely to be the biggest
challenge for the analysis of microarray data in the foreseeable
future. There may also be additional information about each
variable or sample unit, which are called “covariables.” The co-
variables for the sample units will consist of information about
extra variables (e.g., other known characteristics related to the
tissues, such as disease pathology), while the covariables for
the variables will consist of information about extra sample
units (e.g., unknown tissues about which predictions are to be
made), as shown in Figure 1. Also, for ease we use the term
“gene” to refer to the spotted cDNA sequences irrespective of
whether they are actually genes, ESTs, or other DNA sequences.

DATA ANALYSIS

Preprocessing

Preprocessing involves filtering of the data, followed by stan-
dardization. It is based on the assumption that you have already
collected appropriate data. This is itself not necessarily straight-
forward, because we are not measuring gene expression directly
but instead are measuring a dye intensity (Wu, 2001). Retriev-
ing the data from microarray images has its own data analysis
problems, which we will not be covering here. Useful reviews
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of this topic are provided by Y.H. Yang et al. (2002a) and Glas-
bey and Ghazal (2003), with spot quality being discussed by 
Y. Chen et al. (2002).

Filtering of the microarray data is necessary because the lab-
oratory techniques have not yet proved capable of producing
reliable data consistently (Bakay et al., 2002; Kothapalli et al.,
2002; Kuo et al., 2002; Li et al., 2002; Novak et al., 2002;
Wierling et al., 2002). This is particularly so given the very
large nature of the datasets generated. Consequently, it would
be naive to analyze data without first assessing its quality, par-
ticularly with respect to what statisticians call “outlying val-
ues,” which are those observations that appear to be out of line
with the other observations in the data. These can be irrepro-
ducible duplicate spots/probes on the same array or duplicate
spots/probes on replicate arrays (Quackenbush, 2002).

Outliers can occur for a number of possible reasons: (1) the
observation is a mistake or error during data acquisition; (2) the
observation is real but is not representative of the population
from which the sample came; and (3) the observation is repre-
sentative of a very variable population. Clearly, mistakes should
be corrected, which is the role of the specialist imaging soft-
ware used (see Hess et al., 2001), or else the observation must
be deleted from the sample if the correction can no longer be
made. Representative observations should be left alone, and the
consequences for the data analysis accepted. Nonrepresentative

observations can be trimmed from the dataset, provided some
explicit and repeatable method is used. There are many meth-
ods available for this (Barnett and Lewis, 1978), and Hess et
al. (2001), Tseng et al. (2001) and Nadon and Shoemaker
(2002) make some suggestions specifically for microarray data.
The consequences of leaving outliers in microarray datasets
(e.g., discrepant results from the data analysis) are discussed by
Chu et al. (2002).

An important distinction can be made between observations
that appear to be below some detection limit of the experimental
method and observations of replicated samples that appear to
deviate strongly from each other. In the former case (e.g., when
the foreground pixels have smaller values than the background)
the observations are often replaced in the analysis by some pre-
specified minimum value (or by optimizing some mathemati-
cal criterion; Wernisch et al., 2003), while in the latter case one
of the discrepant values is omitted from the analysis (I.V. Yang
et al., 2002). You must be vary careful when dealing with these
situations, especially if the number of affected observations is
large (e.g., .5%), as they can materially alter the conclusions
of the subsequent analyses (Chu et al., 2002; Grant et al., 2002).
It is probably better to mathematically model the background
and foreground signals to reduce the extent of these problems
(Kooperberg et al., 2002a). There may also be truncation at the
upper end of the data, due to saturation (Ramdas et al., 2001;
Wu, 2001).

Standardization can consist of either or both of two pro-
cesses: (a) transformation; and (b) normalization. This stan-
dardization step is necessary to adjust the contribution of each
data variable and/or sampling unit to the data summary, if this
is required. It is possible that some of the data variables or some
of the sampling units will contribute more to the form of the
final pattern detected than will other variables and/or units, and
this may or may not be desirable. Note that it is the procedures
used for standardization that make the biggest difference be-
tween the analysis of complementary DNA arrays and oligo-
nucleotide arrays—most poststandardization procedures apply
equally well to both technologies.

Transformation changes the scale on which the data are mea-
sured. For example, it is usual to measure H1 concentration on
a logarithmic scale, which we then call pH (2log10H1). This
is because experience has taught us that the biological charac-
teristics that are related to H1 concentration are best studied
and analyzed using this particular scale. A similar argument ap-
plies to gene expression data. Such data usually have a log-
normal (rather than normal) frequency distribution and their be-
havior usually shows multiplicative (rather than additive)
effects (Kerr et al., 2000; M.L.-T. Lee et al., 2000; Wolfinger
et al., 2001; Hoyle et al., 2002; Speed and Yang, 2002;
Tsodikov et al., 2002). Both of these features mean that any
microarray dataset should be analyzed using a logarithmic scale,
so that the data are comparable in a biologically meaningful
way. It is thus standard to transform microarray observations
to log2 as part of the preprocessing (Dudoit et al., 2002c; Nadon
and Shoemaker, 2002), so that linear changes in the observa-
tions will represent fold-changes in expression level (i.e., 0 rep-
resents normal expression, 11 represents twofold everexpres-
sion, 21 represents twofold underexpression, etc.; Dopazo et
al., 2001).

Normalization is used to make sure that all of the variables
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FIG. 1. Schematic representation of expression data from a
microarray experiment. The observations are arranged in a data
matrix of rows and columns. Here, the columns represent the
sampling units (e.g., arrays, tissues, times, experimental condi-
tions) and the rows represent the variables (e.g., genes, ESTs).
There will be one observation for each variable for each sam-
ple unit. The collection of observations for any one variable is
called an “expression profile,” while the collection of observa-
tions for any one sample unit is called an “expression finger-
print” or “expression signature.” There may also be additional
information about each variable or sample unit, which are called
covariables.



being compared are being measured on roughly the same scale
of variation. The data are adjusted so that experimental vari-
ability has been accounted for, thus eliminating bias—we don’t
want variation caused by the technology to interfere with our
study of biological variation. The sort of variability we are talk-
ing about here is that between spots or probes on an array and
between arrays, including: background noise, production and
detection efficiency (e.g., printing, labeling and scanning dif-
ferences), probe/dye-specific effects, and differences in RNA
quantity and quality (Schuchhardt et al., 2000; Wu, 2001). We
want the quantitative data analysis to be about biological vari-
ability (i.e., differential expression) rather than about this ex-
perimental variability (i.e., experimental artefacts), and nor-
malization tries to achieve this. This means that we can focus
on the “interesting variation” rather than the “obscuring varia-
tion” (Bolstad et al., 2003). This is not a trivial issue, because
the results of the data analysis can be influenced more by dif-
ferent methods of normalization than by different methods of
statistical analysis (Hoffmann et al., 2002), at least for oligo-
nucleotide arrays. However, oligonucleotide arrays do seem to
require much stronger normalization than do cDNA arrays
(Workman et al., 2002).

A number of general normalization techniques have been
suggested, and several of these have been summarized by
Schuchhardt et al. (2000), Hess et al. (2001), Kroll and Wölfl
(2002), Nadon and Shoemaker (2002), Quackenbush (2002),
and Tsodikov et al. (2002). All of the techniques have their own
strengths and weaknesses. Perhaps the most important distinc-
tion is between the “global” methods, based on the average
value for an array (e.g., the median spot intensity for the array),
and the use of reference standards (e.g., a reference treatment
that is repeated several times on each array) or gene subsets
(e.g., housekeeping genes). The former are strongly influenced
by the particular experimental conditions being used (e.g., there
may be a nonlinear relationship between the red and green flu-
orescence values, and this cannot be corrected by using only a
single calibration value). If global methods are used, then it is
probably best to subtract the median and divide by the in-
terquartile range (Nadon and Shoemaker, 2002; Pan, 2002), or
use a trimmed mean (Kroll and Wölfl, 2002), as these will be
robust to variability in the type of data. The use of gene sub-
sets also does not deal with intensity-dependent dye biases, nor
does it deal with sample-specific biases.

However, dye or probe biases can depend strongly on signal
intensity and spatial location within the array, particularly for
cDNA arrays (Tseng et al., 2001; Workman et al., 2002;
Wernisch et al., 2003), which can be caused by the printing de-
vice, conditions during printing, or the scanning device. There-
fore, instead of global methods it is probably better to use meth-
ods based on MA plots (Dudoit et al., 2002c; Workman et al.,
2002; Bolstad et al., 2003). These scatterplots show the ratio
of two dye/probe intensities (vertically) and their mean inten-
sity (horizontally), which is a better graphical method than plot-
ting one intensity against the other because it attributes uncer-
tainty to both intensities. If there are no intensity-dependent
effects in the array then the points on the MA graph (some-
times also called an R-I graph) would form a horizontal straight
line. A nonlinear regression, for example, locally weighted
smoothing (LOWESS) or cubic quantile splines (qsplines), can
be used to normalize the data so that they do form such a line.

Spatial variation is dealt with by normalizing the means of print-
tip groups (Dudoit et al., 2002c; Workman et al., 2002), or by
fitting a two-dimensional trend surface (Workman et al., 2002;
Wernisch et al., 2003).

There is also variation between arrays, which can be sub-
stantial, due to different manufacturing characteristics or dif-
ferent experimental setups. This variation can be dealt with by
scaling the various arrays in an experiment to some common
standard. This could be done by global methods such as the
same median or (better) the same variance (Quackenbush, 2002)
or median average deviation (Dudoit et al., 2002c; Y.H. Yang
et al., 2002b). Alternatively, it can be done by using a nonlin-
ear regression to linearize the relationships, either using all
genes (Bolstad et al., 2003) or a subset of genes that is rank in-
variant across the arrays (Schadt et al., 2001; Tseng et al., 2001;
Kepler et al., 2002).

All of these normalization methods have the potential prob-
lem of “over fitting” the data (Kerr et al., 2002). That is, be-
cause the parameters of the adjustment are estimated from the
dataset itself, there can be unnecessary adjustments of the data
for problems that don’t actually exist, or even introduction of
biases greater than the ones removed. However, studies to date
indicate that this does not happen often in practice (Y.H. Yang
et al., 2002b). If this is a concern, then a simple shift-log trans-
formation may be more appropriate (Kerr et al., 2002), although
this also requires the parameter to be estimated from the dataset
itself.

Unfortunately, variation in normalization requirements
among experiments will probably mean that there will be no
universally applied standardization method for microarrays. In
each experiment we will have to investigate all three known
sources of unwanted variation: global, signal-dependent and
spatially dependent variation. Each source of variation can then
be dealt with on its own merits, as some will have additive ef-
fects (which can be corrected by the global methods), some will
have multiplicative effects (dealt with by the log transforma-
tion) and some will have nonlinear effects (adjusted by the non-
linear regression and trend surfaces).

Hypothesis testing

The detection of increased or decreased expression in genes
is often demonstrated by using some arbitrarily chosen level of
expression (e.g., twofold change from some nominated refer-
ence sample). This is a rational and logical thing to do because
it is explicit and repeatable, but it is nevertheless probably un-
acceptable as a general principle in science because it is com-
pletely arbitrary—that is, there is no theoretical basis for choos-
ing any particular fold change (despite several attempts to
provide this; Y. Chen et al., 2002; Quackenbush, 2002; I.V.
Yang et al., 2002), and the reliability of fold changes may de-
pend on spot intensity. Scientists have long preferred more ob-
jective methods of data analysis, and in particular, they have
used statistical methods to help provide the evidence that they
seek in their experiments. The quantitative analysis of mi-
croarray data should be no different, and there is no real rea-
son why standard techniques cannot be applied.

Univariate data are thus best analyzed using statistical hy-
pothesis testing. The experimental question is turned into a sta-
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tistical question, and the answer to the statistical question is
used to guide our answer to the original experimental question.
In statistics this is referred to as “confirmatory data analysis,”
because we wish to confirm (or deny) our prespecified mathe-
matical pattern, or “inferential data analysis,” because we wish
to use our samples to infer a pattern about the population from
which they came. The basic intention is to assess whether an
observed change in expression is likely to represent a real bio-
logical pattern rather than a random accident.

In the usual hypothesis-testing framework an explicit pattern
is predicted to occur in the dataset (e.g., that the averages of
the observations in two experimental groups will be different
from each other) and a single, repeatable mathematical test is
used to evaluate whether this pattern exists or not (e.g., at some
specified probability level). The procedure for statistical hy-
pothesis testing is exactly the same no matter what the type of
analysis is. The experimental null hypothesis is treated as a sta-
tistical null hypothesis for the purpose of the analysis—this lat-
ter hypothesis says that the observed pattern is entirely due to
random chance. The likelihood of the statistical null hypothe-
sis being false is assessed by applying a statistical test to the
experimental data. This test produces a test statistic, which is
then compared to the critical region of the frequency distribu-
tion for that statistic. If the value of the test statistic falls within
this critical region then the statistical null hypothesis is rejected;
otherwise it is accepted.

The logic of statistical hypothesis testing is thus an induc-
tive argument (from consequences back to an hypothesis) rather
than a deductive argument—that is, we are going from a 
specific instance (our sample) to the general (our population).
Inductive arguments do not constitute proof in a formal philo-
sophical sense, but they can provide very convincing argu-
ments. The basic problem with induction is that no matter how
much evidence we gather in support of a particular hypothesis,
we can never be certain that this same evidence would not
equally support any number of other unknown hypotheses. It
seems strange to many people that, recognizing the virtues of
deductive logic in experimentation, we often have to resort to
inductive logic to analyse the data. That is, we are expecting a
yes/no answer to our experimental question, and we have to get
this by assessing a probability. This apparent paradox is sim-
ply a product of using a sample in our experiment rather than
the population. If there was no variability among the sampling
units then this would not be a problem; but whilever (1) there
is biological variability and (2) we have only a sample, then the
use of induction will be a necessary consequence.

Statistical hypothesis testing is best developed for univariate
data. That is, we specify a statistical pattern for one variable at
a time and test it separately, rather than specifying a common
pattern for a series of variables. For example, if we are com-
paring a series of genes across two experimental groups, then
we would test the pattern for each gene separately, rather than
testing some common pattern across all genes. This makes each
analysis conceptually quite simple.

If there are two experimental groups being compared (e.g.,
an experimental manipulation and a control, or two develop-
mental stages of some organism) then the most common sta-
tistical test is a t-test; an analysis of variance is needed if there
are more than two groups. This can be thought of as class com-
parison, because we are comparing two classes of objects. Al-

ternatively, if the experimental objective is the comparison of
gene expression levels to other biological characteristics then
the most common tests are correlation or regression. These tests
are described by all introductory statistical books. Unfortu-
nately, there is as yet no single test that has achieved wide-
spread acceptance or use for microassays. This is mainly be-
cause all such tests require replication of the experimental
treatments (see below), which has in the past been problematic
for microarray studies. We expect this situation to change.

A specific problem arises with the use of these univariate
tests for microarray data because a large series of statistical hy-
potheses are being tested (i.e., one for each of the hundreds or
thousands of genes). This is the multiple-testing problem (Shaf-
fer, 1995), and it has long been recognized as a serious bug-
bear for microarray data analysis (e.g., Claverie, 1999; Dudoit
et al., 2002b). If a large number of statistical comparisons are
made then some of the decisions to reject the null hypothesis
will be due to errors—the more null hypotheses that are tested
using the one dataset, then the more likely it becomes that at
least one of these hypotheses will be rejected by random chance.
For example, if we test each of 100 genes at P 5 0.05, then we
would expect that (on average) we will falsely reject the null
hypothesis five times (this is conceptually what P 5 0.05
means). These errors are called “Type I errors” by statisticians,
or “false positives” or “false discoveries” by many biologists.
It is thus necessary to distinguish between the probability of a
Type I error for each individual hypothesis test (the individual
error rate) and the probability of a Type I error for the entire
collection of hypothesis tests (the setwise, familywise, or ex-
perimentwise error rate). For example, if the individual error
rate is P 5 0.05, then for 100 independent comparisons the set-
wise error rate will be P 5 0.994, which is clearly unaccept-
able. This obviously has the potential to lead the experimenter
to an unjustified conclusion (see Morrison, 2002a, for a spe-
cific example), and the problem needs to be dealt with.

There seem to be two basic approaches to solving this prob-
lem. The first is to carry out the analysis by specifying the set-
wise (or familywise) error rate and then adjusting the individ-
ual error rate in an appropriate manner (Dudoit et al., 2002b).
The most widely used adjustment is the Bonferroni correction,
in which the probability for each separate hypothesis test is cal-
culated as the setwise error rate divided by the number of tests
(Morrison, 2002a). This approach and several of its variants,
such as the sequential methods of Holm and Hochberg, are dis-
cussed in more detail by Nadon and Shoemaker (2002) and Du-
doit et al. (2002c). There will, in practice, be very little differ-
ence in the outcome of these variants, especially if very few of
the null hypotheses are rejected.

Furthermore, this is rather a conservative approach, espe-
cially when applied to microarray data with thousands of genes
(Xiao et al., 2002; Ge et al., 2003), and so alternatives have
been proposed (Dudoit et al., 2002b). These include permuta-
tion (see below) versions of these procedures, as well as novel
approaches such as those of Westfall and Young, all of which
increase their statistical power by taking into account the non-
independence resulting from the covariance structure of gene
expression patterns (Slonim, 2002; Ge et al., 2003). That is,
they are expected to be better tests because they explicitly take
into account the inevitable correlations that exist among ex-
pression levels of different genes (e.g., due to participation in
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related biochemical pathways). The underlying premise of all
of these methods is to rank the probabilities and to apply a dif-
ferent correction for each probability depending on its rank. The
method that is currently most popular involves controlling the
false discovery rate rather than the setwise error rate (Tusher
et al., 2001; Efron and Tibshirani, 2002; Ge et al., 2003), which
is the probability that a rejected null hypothesis is false. How-
ever, it should be noted that the most commonly used “imple-
mentation” of this procedures, in significance analysis of mi-
croarrays (SAM) (Tusher et al., 2001), actually estimates the
individual error rate rather than explicitly controlling the false
discovery rate.

The second approach to dealing with the multiple-testing
problem is to incorporate the multiple comparisons into the
analysis. For example, instead of doing a simple t-test or anal-
ysis of variance (ANOVA), a multifactorial ANOVA can be
used, in which the genes form the levels of a second factor. The
calculation of the degrees of freedom in the ANOVA will ef-
fectively deal with the multiple comparison tests. This idea is
explored in more detail in the context of microarray data by
Kerr et al. (2000), Kerr and Churchill (2001b), and Dobbin and
Simon (2002). Incorporating several factors into the data anal-
ysis is an important issue, and so it is worth considering fur-
ther here.

An analysis of variance is simply a statistical test of the dif-
ferences between two or more groups of replicate observations
defined by a particular experimental “treatment”—a grouping
variable is called a “factor” and the groups are called “levels.”
The calculations of the analysis produce an F-ratio (the test sta-
tistic) for each factor, which is used to decide whether there is
a statistically significant difference between the means of two
or more of the groups. The F-ratio is calculated using the mean-
squares, which measure the amount of variability both within
and between the groups. When an ANOVA involves more than
one factor, there is a separate F-ratio calculated for each factor
and also potentially also for all of the interactions between the
factors. Multifactorial ANOVA is thus a general technique, in
that it subsumes all possible simpler analyses. This means that
the t-test, paired t-test, and 1-factor ANOVA are all simply spe-
cial cases of the more general multifactorial analysis (e.g., the
results of a t-test and an ANOVA of the same data are directly
related by their test statistics: F 5 t2). There is a long tradition
of the use of ANOVA models in multifactorial experiments,
and their application to microarray studies has not yet really be-
gun to make use of the potential that is clearly there. Chu et al.
(2002) provide a good overview of the issues involved in the
use ANOVA in microarray studies, albeit focussed on the ap-
plication to oligonucleotide arrays.

The point of wanting to have several factors in an ANOVA
is clearly that several statistical hypotheses are tested simulta-
neously in a valid manner. Thus, we can analyze experiments
involving multiple experimental conditions, which takes us be-
yond the constraints of the simple treatment/control type of ex-
periment. The degrees of freedom associated with the analysis
are used to make sure that the various comparisons among
groups are carried out appropriately, in the sense that each com-
parison takes into account the result of every other comparison
that has been included in the analysis. So, if an experiment is
designed such that there are multiple influences being studied,
then each influence should be incorporated into the analysis as

a separate factor—that is, the analysis should match the exper-
imental design. This is the principal property of analysis of vari-
ance, that it allows us to focus on the features of the experi-
mental design to carry out an appropriate analysis of our
experimental hypotheses, rather than trying to subdivide the
analysis into a series of simpler analyses that are often inde-
pendent of our original experimental question. (As an aside,
please do not confuse multifactorial analyses with multivariate
analyses. The latter refers to the number of variables measured
on each experimental unit, while the former refers to the num-
ber of factors incorporated into the analysis. It is possible for
an analysis to be either multifactorial or multivariate indepen-
dently of the other.)

The practical issues associated with including multiple fac-
tors in an ANOVA are covered in books such as those of Zar
(1999) and Glantz and Slinker (2001). Perhaps the most im-
portant of these are the distinctions between nested and or-
thogonal factors and between fixed and random factors (Mor-
rison, 2002b). Some of the issues specifically related to their
application to microarrays are discussed by Wolfinger et al.
(2001), Kerr et al. (2002), Y.H. Yang and Speed (2002) and
Wernisch et al. (2003). Also, it is important to assess the math-
ematical assumptions on which the analysis is based (see Black
and Doerge, 2002, and Chu et al., 2002, for some examples),
particularly normality (examined using a normal probability, or
QQ, plot) and homogeneity of the variances (examined using a
plot of residuals). There have, unfortunately, been few appli-
cations of multifactorial ANOVA to microarray data to date
(e.g., Jin et al., 2001; Boldrick et al., 2002; Kerr et al., 2002),
but the ideas are standard in the rest of biology and so will pre-
sumably become more common here as well. Perhaps one lim-
itation is that, due to the enormous number of genes involved,
it is usually impossible to carry out the actual calculations us-
ing common statistical computer programs (i.e., the number of
levels for the gene factor is too large for them to handle). There-
fore, specialist computer programs have been developed specif-
ically for microarray data (e.g., Didier et al., 2002).

There are three further potential advantages to the use of
multifactorial ANOVA in statistical hypothesis testing of mi-
croarray data. First, global normalization of the data can be in-
corporated directly into the analysis rather than requiring a sep-
arate preprocessing step. That is, for cDNA arrays the red and
green spot intensities are kept separate in the data analysis,
rather than being combined into a ratio, and a factor with two
levels is used to include them both in the calculations. This idea
is explored in more detail by Kerr et al. (2000), Wolfinger et
al. (2001), and Dobbin and Simon (2002), and has been applied
by Jin et al. (2001). However, it may actually be preferable to
use more flexible normalization procedures, leaving the
ANOVA to deal with the remaining sources of experimental
variation (Dudoit et al., 2002c).

Second, the variances that are used for detecting over- or un-
derexpressed genes in different experimental groups are esti-
mated from the pooled collection of genes across all groups
rather than from each group individually. Estimating a variance
separately for each gene for each experimental group is poten-
tially risky because of the small sample size that is usually in-
volved (i.e., the few replicate arrays). For example, estimating
a variance from only two observations is not a very accurate
procedure, because even a small change in the observation for
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either replicate can greatly affect the calculated variance. This
effect obviously decreases as the sample size increases. It is
therefore preferable to use the pooled estimate of the within-
group variance. This, however, does place more reliance on the
data meeting the assumptions of the ANOVA procedure.

Third, ANOVA allows the estimation of variance compo-
nents in addition to the hypothesis tests (Gibson, 2002;
Wernisch et al., 2003). The variance components estimate how
much of the total experimental variation is accounted for by
each of the factors and interactions included in the analysis.
This information can be a useful adjunct to the simple consid-
eration of statistical probability. For example, those factors con-
tributing most of the variation may be of biological significance
even if they are not statistically significant. Assessment of vari-
ance components also helps in making decisions about what as-
pects of the experiment need replication (e.g., should it be the
samples, the arrays, or the spots?) (Churchill, 2002). This idea
has been applied to microarray data by, for example, Jin et al.
(2001) and Wernisch et al. (2003).

One potential problem with the use of ANOVA for the anal-
ysis of microarray data is the calculation of the probability that
is associated with each hypothesis test. The usual parametric
calculation associated with ANOVA (i.e., based on the as-
sumption that the data have a normal frequency distribution
with equal variances) is likely to be invalid for microarray data
(i.e., the data will violate the assumptions of the analysis), and
so these possibly should not be used (Thomas et al., 2001; Troy-
anskaya et al., 2002; Xiao et al., 2002). Alternative parametric
strategies have therefore been used to deal with estimating the
correct probabilities for microarray data, all based on trying to
somehow model the actual underlying error distribution (e.g.,
using “penalized” versions of standard tests such as the t-test).
These strategies include regression modeling (Thomas et al.,
2001; Spang et al., 2002), mixture modeling (Pan, 2002), as-
sociative analysis (Dozmorov and Centola, 2003), Bayesian
analysis (Baldi and Long, 2001; Long et al., 2001; Tseng et al.,
2001; Townsend and Hartl, 2002), empirical Bayesian methods
(Efron et al., 2001; Efron and Tibshirani, 2002; Lönnstedt and
Speed, 2002), permutation-validated principal components
analysis (Landgrebe et al., 2002), limit fold change (Mutch et
al., 2002) and significance analysis of microarrays (SAM)
(Tusher et al., 2001). It is not yet clear how successful these
strategies are. Many of these methods are currently restricted
to comparing two experimental groups only, but many of them
can probably be used in a hierarchical factorial context similar
to analysis of variance (e.g., Long et al., 2001; Lönnstedt et al.,
2001; Tusher et al., 2001; Townsend and Hartl, 2002). Unfor-
tunately, this has not been done in most of the computer pro-
grams released to date. When this is done, there will need to
be some quantitative method to compare the results of the dif-
ferent models for analysing the data (Kooperberg et al., 2002b).

Alternatively, many authors replace the parametric tech-
niques with nonparametric alternatives (Troyanskaya et al.,
2002). For example, a t-test can be replaced with a Mann-Whit-
ney U-test or a one-factor analysis of variance with a Kruskal-
Wallis test. These have been shown to be viable alternatives for
gene expression data (P.J. Park et al., 2001; Liu et al., 2002;
Troyanskaya et al., 2002; Tsodikov et al., 2002), although they
are conservative tests (i.e., they have a tendency to miss some
of the “real” patterns, resulting in what are called “false nega-

tives” by many biologists). This is because these tests are based
on ranking the observations, which necessarily loses informa-
tion, especially for small sample sizes (Thomas et al., 2001).
The expression level of a gene may change in different exper-
imental treatments without changing its ranking, and the rank
may change without a change in expression level, because the
rank depends entirely on the behaviour of the other genes while
the absolute expression level does not necessarily do so (other
than the biological dependence resulting from the biochemical
pathways).

Therefore, it is might be better to use nonparametric ran-
domization procedures (Troyanskaya et al., 2002), as described
in more detail for multivariate data in the next section. The
usual approach to assessing the statistical significance of the
factors is the use of permutation testing (Good, 1999; Lun-
neborg, 1999), as used by Tusher et al. (2001), Dudoit et al.
(2002c), Grant et al. (2002), and Kooperberg et al. (2002b) for
microarray data. However, this does not necessarily tell us
which particular genes are showing over- or underexpression
in the ANOVA, and for this purpose Kerr et al. (2000, 2002)
have suggested the use of bootstrapping to create confidence
intervals that can then be used for hypothesis testing (a similar
procedure is used by Wernisch et al., 2003), while P.J. Park et
al. (2001) have used permutation of nonparametric scores to
create probabilities, and Landgrebe et al. (2002) have used per-
mutation for variance testing. There are currently some limita-
tions on the use of permutation testing, including the potential
need for equal sample sizes in the groups being compared, es-
pecially for multifactorial ANOVAs (which is then called a bal-
anced design). It is for this reason that missing data need to be
dealt with, as discussed in the next section (e.g., the SAM data
analysis imputes missing data in order to balance the sample
sizes; although Bayesian analysis can potentially sidestep the
potential problems; Townsend and Hartl, 2002). Permutation
procedures can also be used to calculate probabilities that have
been adjusted for the multiple hypothesis testing problem (Du-
doit et al., 2002b; Ge et al., 2003).

It is also worth pointing out that statistical probabilities should
not be overinterpreted. Biological scientists have long been ac-
cused by statisticians of naive statistical hypothesis testing, with
overzealous attention to statistical hypothesis testing often tak-
ing attention away from more important aspects of the experi-
mental hypothesis test. The statistical null hypothesis is not the
experimental null hypothesis, and statistical significance is not
biological significance. Furthermore, no calculation of proba-
bilities can ever be exact, and so microarray probabilities should
never be treated as though they are particularly precise. More to
the point, given that the observations have been filtered, trans-
formed and normalized, microarray data have been artificially
homogenized, thus tending to decrease the resulting probabili-
ties (Wu, 2001; Xiao et al., 2002). This can only increase the
number of Type I errors. It is therefore always a good idea to
plot what are known as volcano plots (Lönnstedt et al., 2001;
Chu et al., 2002; Gibson, 2002; Townsend and Hartl, 2002).
These show the strength of the statistical pattern on the vertical
axis and the strength of the biological pattern on the horizontal
axis (the reason for the name will be obvious when you see the
example below)—this makes clear the sometimes unequal rela-
tionship between the two concepts, and highlights observations
that show a large pattern for only one of the two characteristics.
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Another form of hypothesis testing involves examining the
relationship between the microarray dataset and any continu-
ous covariables for which we might also have data. We have
already discussed the analysis of grouping covariables above,
when we discussed the role of multiple factors in an ANOVA.
However, different analysis techniques are needed if we have
covariables that are measured on a continuous scale.

Correlation analysis is the most common technique for look-
ing at the relationship between continuous covariables and ei-
ther expression profiles or expression fingerprints (Wu, 2001).
This is usually done in a pairwise fashion, testing each finger-
print against each covariable. However, care must be taken, be-
cause we immediately come to the same multiple-testing prob-
lem highlighted above. Furthermore, you must remember that
the normal correlation coefficient only tests for linear relation-
ships, and will therefore not detect any nonlinear ones.

Similar comments apply to the use of regression analysis for
the same purpose, including logistic regression (Dopazo et al.,
2001; Shannon et al., 2002). The important difference between
regression and correlation analyses is that correlation is con-
cerned with assessing the closeness of the relationship between
two data variables, while regression is concerned with estimat-
ing the equation of the line that best describes the relationship
between two data variables. Correlation thus seeks relationships
between two variables, while regression quantifies suspected
relationships between them. That is, regression is about the form
of the relationship, while correlation is about the strength of
the relationship. The two analyses are actually based on mutu-
ally exclusive sets of assumptions about the data, and you
should not treat them as interchangeable. Tibshirani and Efron
(2002) use a variant of jackknifing for assessing the validity of
regression equations as predictors.

Finally, the analysis of time sequences involving microarray
data has been poorly addressed to date (Filkov et al., 2002).
Time-series analysis is a well-recognized technique within sta-
tistics, and its power has not yet been fully applied to finding
and testing patterns in microarray data (Slonim, 2002). Recent
suggestions for different approaches to the problems include:
using a multifactorial ANOVA with time as one of the factors,
with permutation testing and adjustment for multiple hypothe-
sis testing (T. Park et al., 2003); information-theory analysis
(Kasturi et al., 2003); piecewise nonparametric regression (de
Hoon et al., 2002); clustering based on time-series analysis (Ra-
moni et al., 2002) or nonlinear curve fitting (Luan and Li, 2003);
and partial least-squares regression (Johansson et al., 2003).
The relative efficacy of these alternatives remains to be as-
sessed.

Pattern recognition and prediction

Multivariate data analysis does not easily fit into the usual
framework of statistical hypothesis testing. In the usual hy-
pothesis-testing framework an explicit pattern is predicted to
occur in the dataset and a single mathematical test is used to
evaluate whether this pattern exists or not. However, because
multivariate data are inherently complex, we frequently do not
know what pattern to predict in the dataset, and so we cannot
be explicit beforehand about what pattern or patterns we would
interpret as biologically meaningful. Instead, we wish to search
for any patterns that might exist in the dataset, which we might

then interpret post hoc as being potentially meaningful. So, the
answer to our experimental question arises from the result of
our search for patterns in the dataset rather than from the an-
swer to an explicit statistical question.

Multivariate data analysis is thus frequently in the nature of
a fishing exercise, or what is more technically referred to as
“data mining” or “pattern analysis.” In statistics this is referred
to as “exploratory data analysis,” because we are exploring the
dataset for mathematical patterns, or “descriptive data analy-
sis,” because we wish to summarize those patterns rather than
make explicit inferences about them. The important thing to
recognize is that the dataset consists of measurements for a se-
ries of variables for each sample unit, and it is the whole series
of measurements that we wish to summarize and explore. For
microarray data this means having multiple measurements of
expression for each gene, either under different experimental
conditions, from different tissues or as part of a time series.
These multiple measurements are sometimes referred to as an
“expression profile” for each gene.

The most depressing thing about multivariate pattern analy-
sis for most biologists is that there is no single mathematical
technique that can be universally recommended. This situation
arises from the fact that there is no single pattern that can be
expected in the data—if there are many possible patterns in the
data then there must be many possible mathematical techniques
for finding those patterns, as each technique looks for a differ-
ent type of pattern. Consequently, there is a myriad of possible
analysis techniques available, and many of them have been ap-
plied to microarray data at one time or another.

More to the point, there is no way of knowing a priori which
technique(s) will find those pattern(s) that happen to be in your
data. Choosing the technique that is suggested to be best under
the widest range of possible circumstances sounds like a rea-
sonable criterion of choice, but this is not necessarily a good
idea. For example, if your data always have certain character-
istics (e.g., because of the experimental conditions and the way
the data are quantified) then what you actually want is the tech-
nique that performs best under those precise circumstances, ir-
respective of how it performs under other circumstances. So,
what we need is critical assessments of the techniques specifi-
cally for microarray-type data.

It is thus currently not easy to present multivariate pattern
analysis as part of a rigid protocol, similar to a laboratory pro-
tocol—one fishes in the data and sees what fish one catches.
This may seem rather nonscientific, but it is the end result of
the experimenter not having a fixed idea about exactly what
pattern will exist in the data. There is no point in blaming sta-
tisticians for this situation—if we could tell them exactly what
we want then they could do something about providing it.

Since there are a lots of techniques, it is necessary to sum-
marize them and their characteristics in some way. The tradi-
tional way is to recognize two main types of multivariate anal-
ysis: (1) supervised (or machine learning) techniques, in which
the analyst “supervises” the search for patterns by making sug-
gestions about what patterns to look for; and (2) unsupervised
techniques, in which it is solely the mathematical algorithm that
determines the search for pattern.

Both techniques have a multitude of alternative possibilities.
Sadly, the proponents of the many techniques have rarely made
any attempt to systematically demonstrate that their proposed
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method is superior—they merely demonstrate that their method
will work (or, in technical terms “provides competitive perfor-
mance”). So, a detailed comparison and critique of the tech-
niques as applied to microarray data is currently lacking, other
than the empirical comparison of several supervised techniques
by Dudoit et al. (2002a) and several unsupervised techniques
by Yeung et al. (2001), G. Chen et al. (2002), Dougherty et al.
(2002), and Datta and Datta (2003) (although several unpub-
lished comparisons are also extant, see Slonim, 2002). One ma-
jor problem with performing a worthwhile comparison of the
techniques is providing large enough training and testing
datasets. The normal method when confronted with small
datasets is to use crossvalidation, but to date this has usually
been implemented in a manner (i.e., leave one out) that results
in overly optimistic estimates of prediction accuracy (Ambroise
and McLachlan, 2002; Bø and Jonassen, 2002; Kim et al.,
2002).

The supervised techniques are designed to act as predictive
classification tools (i.e., class prediction). That is, they allow
us to predict the characteristics of unknown specimens based
on the characteristics of known specimens—we could then, for
example, assign an unknown DNA sequence to one of a set of
known gene classes. Among the techniques, we have traditional
techniques such as: discriminant function (or canonical vari-
ates) analysis; logistic regression; nearest-neighbor classifiers,
or weighted voting; classification, regression or decision trees
(recursive partitioning analysis); and support vector machines
or artificial neural networks. Some of these techniques are
briefly described in the context of microarray data analysis by
Quackenbush (2001), Raychaudhuri et al. (2001), and Slonim
(2002), and details can be found in the book by Legendre and
Legendre (1998). There are also more recent developments such
as: between-group analysis (Culhane et al., 2002); compound
covariate prediction (Radmacher et al., 2002); pairwise feature
subset selection (Bø and Jonassen, 2002); sufficient dimension
reduction (Chiaromonte and Martinelli, 2002); nearest shrunken
centroids (Tibshirani et al., 2002a); Bayesian variable selection
(K.E. Lee et al., 2003); independently consistent expression dis-
criminators (Bijlani et al., 2003); strong-feature classifiers (Kim
et al., 2002); disjoint principal components analysis (Bicciato
et al., 2003); and various genetic algorithms (Deutsch, 2003;
Ooi and Tan, 2003).

Such supervised techniques essentially use training groups
to quantify the expected patterns in the dataset, and then use
this “learned” information to analyze the unknown patterns. The
training groups are based on existing biological information,
such as knowledge of gene function, tissue origin, cell type, or
experimental treatment. The learned information is encapsu-
lated in a set of mathematical equations or rules, designed to
reliably assign new sampling units to the groups. The techniques
differ in the type of discrimination rule that they use. So, the
usual use of such methods is for rapidly identifying diagnostic
genes, or for selecting a minimally predictive set of genes. Hav-
ing too few predictive genes is as bad as having too many genes,
the former because the discrimination will be inadequate and
the latter because some of the genes will be irrelevant to the
prediction. Most of the techniques seem to provide rather sim-
ilar results, at least based on the limited number of datasets for
which they have been compared.

Dudoit et al. (2002a) concluded that some of the simpler

methods actually work better than most of the more complex
ones. Much of the reason for this appears to be to do with the
number of genes compared to the number of biological sam-
ples. Selection of classifiers tends to become unreliable when
the number of potential classifiers (genes) is large relative to
the number of objects (samples) (Dougherty, 2001), and in mi-
croarray studies to date the number of genes exceeds the num-
ber of samples by several orders of magnitude. Class predic-
tion is thus very much a search for a subset of genes that will
act as good predictors of the classes of biological samples. This
is no trivial task, because it essentially involves either trying
every possible combination of genes, which is impossible in
practice for large numbers of genes (mathematically, it is called
NP-hard), or finding some heuristic search strategy, which will
depend for its success on the appropriateness of the heuristics.
There are two basic requirements if the genes are to act as good
predictors (Dougherty, 2001; Ooi and Tan, 2003): the genes
need to be highly correlated with the distinction between the
classes (to be good predictors), and the genes should not be cor-
related with each other (because they will then provide redun-
dant information). Finding subsets of uncorrelated genes seems
to become more problematic the more genes that are consid-
ered (Ooi and Tan, 2003). Furthermore, because the number of
genes is much greater than the number of arrays, perfect dis-
crimination of the groups in the training set is always possible.
This is the same overfitting problem as referred to above (Kim
et al., 2002; Radmacher et al., 2002; Szabo et al., 2002), and
it means that the prediction may be perfect for the training
dataset but useless for any other set of data. So, only simple
classifiers can be used, which may entail a compromise between
simplicity and classification accuracy (Dougherty, 2001). This
simplicity means that there may be very many gene subsets that
are equally optimal with respect to prediction (Kim et al., 2002).

The supervised analyses will only be as good as the infor-
mation used in the training sets, and it is necessary for the an-
alyst to make a series of decisions that can have quite a pro-
found influence on the outcome of the analysis. There can also
be quite severe mathematical restrictions assumed by the analy-
ses. For example, linear discriminant functions assume linear
relationships among the groups and strict multivariate normal-
ity. These constraints can become more serious the more classes
there are for consideration. Recently, therefore, techniques have
been suggested based on constrained or canonical ordination
analysis of binary variables (Culhane et al., 2002), such as re-
dundancy analysis (RDA, using principal components ordina-
tion) and canonical correspondence analysis (CCA, using cor-
respondence ordination), which have been successful in other
fields of biology that face similar problems (e.g., Jongman et
al., 1995).

In contrast, the unsupervised multivariate techniques are de-
signed merely to act as summaries of the data structure (i.e.,
class discovery). That is, they try to find and highlight what-
ever general mathematical patterns there are, which we might
then interpret as having some biological meaning—we could,
for example, distinguish between different functional classes of
genes based on their expression patterns. There is a veritable
arsenal of such techniques, but they can be broken into two
main groups: ordination; and clustering. Such techniques are
basically a two-step process: (a) summarize the patterns in the
dataset by calculating some measure of the relationship between
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all possible pairs of the sampling units, or between all possible
pairs of the data variables; and (b) display the data summary.
There are several possibilities for each of these two steps (e.g.,
correlation coefficient and Euclidean distance for step a, and
ordination and clustering for step b). The differences between
these various possibilities mean that each variant is best at find-
ing a particular type of pattern. Some of these techniques are
briefly described in the context of microarray data analysis by
Sherlock (2000), Dopazo et al. (2001), Hess et al. (2001),
Quackenbush (2001), and Slonim (2002), and details can be
found in books such as those of Podani (1994), Jongman et al.
(1995), Legendre and Legendre (1998), and Theodoridis and
Koutroumbas (1999).

More recently, unsupervised methods tailored specifically to
microarray data have been proposed (e.g., Lazzeroni and Owen,
2002; Mavroudi et al., 2002; Medvedovic and Sivaganesan,
2002). A particular trend has been to propose methods that use
some of these unsupervised techniques as the first step of a two-
step procedure, in which the second step is a supervised pat-
tern-prediction technique or an hypothesis-testing technique.
Thus, the unsupervised technique is used as a data summary or
dimension reduction procedure, and it is the summarized (or re-
duced) data that is analyzed for class prediction or class com-
parison. Combinations include: ordination and discriminant
analysis (Chiaromonte and Martinelli, 2002; Méndez et al.,
2002); partial least-squares and discriminant analysis (Nguyen
and Rocke, 2002a, 2002b) or nonlinear regression (Ghosh,
2002); self-organizing maps and cluster analysis (Wang et al.,
2002a); correlation/clustering and support vector machines
(Jaeger et al., 2003); ordination and regression (West et al.,
2001; Spang et al., 2002); ordination and ANOVA (Landgrebe
et al., 2002); and adaptive dimension reduction and regression
(Antoniadis et al., 2003). These combinations form new vari-
ants of techniques that have been used in other fields of biol-
ogy, all of which use step (a) above and replace step (b) with
a further data analysis (e.g., Legendre and Anderson, 1999).
However, this second step may be unnecessary, because the re-
sults of step (a) can actually be examined directly (Anderson,
2001; McArdle and Anderson, 2001), an approach that does not
yet seem to have been examined for microarray data.

It may be worth briefly emphasizing the differences between
ordination and clustering analyses, since they are far and away
the most commonly used techniques for class discovery in mi-
croarray data. Both techniques display the data summary as a
graph, with ordination using a scatterplot and clustering a line
graph (or tree). Ordination methods seek to arrange (or order)
the sampling units so as to place similar ones close together on
the graph, while grouping techniques try to sort the sampling
units into meaningful groups, with similar sampling units be-
ing placed in the same group. Ordination is therefore more ap-
propriate when the sampling units are thought of as being re-
lated along a gradient, and clustering is more appropriate when
the sampling units are thought of as comprising a number of
partly dissociated subpopulations. Which of these two possible
approaches should be used can thus only be decided by refer-
ence to the original experimental question. In fact, it may be a
good idea to apply both techniques and to compare the results,
as the comparison may provide more insights into the data than
either analysis does alone (Quackenbush, 2001)—for example,
ordinations can be used to assess the distinctness of clusters, or

they may reveal outliers (outliers may be mistakes or they may
indicate interesting biological phenomena).

As far as visualizing the patterns of the complex data is con-
cerned, several useful strategies have been applied to microar-
ray data. For example, Eisen et al. (1998) have championed the
use of ordered two-way diagrams for displaying the results of
clustering analyses. This involves clustering both the genes and
the expression profiles, and showing the two results simulta-
neously. There are objective criteria for sorting such two-way
diagrams so that the order maximizes the similarity of adjacent
elements (e.g., Hill, 1979), but in general, this has been done
on a more ad hoc basis for microarray data (see some suggested
criteria in Eisen et al., 1998). The results of these techniques
can be visualized using coloring to represent different levels of
expression (sometimes called a heat map). Sadly, red and green
have been the chosen colors for over- and underexpressed genes
(Eisen et al., 1998), which makes it difficult for those people
who are red–green colour blind (i.e., 5% of the male popula-
tion)—blue and yellow would have been much better choices.

It is important to recognize the serious limitations that can
apply to multivariate pattern analysis. They are attempts to sum-
marize complex data into a simpler form, and therefore (by def-
inition), they lose information by making assumptions about
what aspects of the data can be usefully lost—their very strength
(the ability to reduce complexity) is also their greatest weak-
ness (the loss of potentially valuable information). The most
important of these limitations is therefore the existence of some-
times quite critical mathematical constraints within particular
analysis techniques, to which the analyses are not robust. Each
analysis technique is based on a set of strict assumptions, and
if these assumptions are violated then the output of the analy-
sis is unreliable. At worst, the patterns revealed by the analy-
sis may be nothing more than mathematical artefacts rather than
representations of real biological phenomena. Three examples
are worth considering here, because they mean that suboptimal
methods are often being used as a result of the sheer size of the
datasets that are generated by microarray experiments.

First, some ordination techniques, particularly eigenanalysis
(i.e., singular value decomposition) techniques such as princi-
pal components analysis (PCA; Hilsenbeck et al., 1999; Alter
et al., 2000; Raychaudhuri et al., 2000) and correspondence
analysis (CA; Fellenberg et al., 2001), are based on strict ideas
about the relationships among the data variables (e.g., that they
are linear or unimodal). None of the proponents of these tech-
niques for the analysis of microarray data seem to have seri-
ously addressed this issue. Nevertheless, these are quite serious
assumptions that are likely to violated by many biological
datasets (e.g., the relationships are often curvilinear), and they
have long been known to potentially introduce distortions into
the ordination diagrams (e.g., Gauch, 1982; Ludwig and
Reynolds, 1988). An example of the distortion is shown in Fig-
ure 2. It is for this reason that multidimensional scaling (MDS)
is usually recommended as an ordination technique in biology
(e.g., Morrison et al., 1994), as it does not require the same un-
derlying assumptions. However, PCA is far more frequently
used than MDS in microarray studies, because the mathemati-
cal calculations are easier to perform on large datasets. In fact,
MDS may be infeasible for many microarray datasets, although
it has been successfully used (e.g., Bittner et al., 2000; Khan
et al., 2001).
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Second, agglomerative clustering is far more frequently used
than divisive clustering (in fact, it is the single most commonly
used multivariate technique). Divisive techniques start with the
whole set of sampling units in one group, and divide this set
into two or more subgroups; each of these subgroups is then
analyzed and divided in its turn. Agglomerative techniques, on

the other hand, start with each sampling unit in a separate group,
and then start grouping them together, thus building up larger
and larger groups. In principle, divisive techniques should per-
form better at the important higher levels of the grouping hier-
archy, because the divisive techniques are most reliable at the
level of few groups whereas agglomerative techniques are least
reliable at this level. However, divisive clustering is probably
infeasible for most microarray datasets, although it has been
used (e.g., Alon et al., 1999). To circumvent this problem, non-
hierarchical techniques such as k-means clustering, quality clus-
tering, and self-organizing maps have been used (see Quack-
enbush, 2001), but it is not clear yet how appropriate they might
be because these have their own limitations. Furthermore, there
is no consensus about how to make the decision concerning
how many clusters should be recognized in any particular mi-
croarray dataset, irrespective of how those clusters were de-
rived, mainly because there is actually no simple definition of
the word “cluster” by which we could recognize one if we saw
one (e.g., see the competing suggestions by Yeung et al., 2001;
Tibshirani et al., 2001a, 2001b; Méndez et al., 2002).

Third, relatively little attention seems to have been paid to
step (a) of the unsupervised techniques, which involves calcu-
lating some measure of the relationship between all possible
pairs of sampling units or variables. The choice of metric to be
used to estimate the size of the relationship can have serious
effects on the analysis results, as can any prior standardization
that is applied to the metric (e.g., Quackenbush, 2001). One in-
tuitively appealing idea, which has been commonly used in mi-
croarray studies, is to use the usual parametric (Pearson) cor-
relation coefficient (Dopazo et al., 2001; Szabo et al., 2002).
The use of the correlation coefficient as a measure of similar-
ity is based on the idea that concordant (i.e., interdependent)
changes have occurred in the objects being compared—that is,
any genes that are different between the two arrays have
changed simultaneously. On the other hand, the alternative
Manhattan coefficient (Kasturi et al., 2003) assumes that all
changes have occurred independently of each other. Unfortu-
nately, biological reality is likely to be somewhere between
these two extremes for any one dataset. Nevertheless, which of
these two metrics we might choose should be based on what
we are prepared to assume about our data.

For those of you who are familiar with distance and simi-
larity measures, the correlation coefficient is simply the Eu-
clidean distance that has been standardized, while the Gower
coefficient is simply the Manhattan distance that has been stan-
dardized. There are thus close connections among the various
metrics. Other proposed metrics, such as the rank correlation,
the angle between two vectors and mutual information, have
not received much attention (Kim et al., 2002). Interestingly,
the Gower measure appears not to have been used for mi-
croarray data, although it has been a highly recommended met-
ric in detailed critiques of other fields of biology (e.g., Faith et
al., 1987).

It is important to recognize that each pattern analysis tech-
nique is designed to examine a particular type of pattern in the
dataset even if that particular type of pattern is absent from the
data (McShane et al., 2002). The most egregious example of
this is occurs when using clustering techniques, all of which
will put the sampling units into clusters irrespective of whether
there are distinct clusters in the dataset or not (except for the
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FIG. 2. Eigenanalysis ordination of the 2066 ESTs from the
Matrajt et al. (2002) data set. Each symbol in the scatterplot rep-
resents one of the ESTs, and their spatial proximity indicates how
similar they are in terms of their expression profiles. The rela-
tionship between all possible pairs of the ESTs was estimated via
a Bayesian infinite mixture model, calculated using the Infinite-
Gaussian program of Medvedovic and Sivaganesan (2002),
which specifically takes into account the replication of the arrays
in the experiment. The data summary is displayed as a principal
coordinates analysis, calculated using the PATN (v. 3.51) pro-
gram of Belbin (1995). Only the first two dimensions of the or-
dination analysis are shown (out of the four available). Note that
there are two distinct distortions of the relationships among the
ESTs in this diagram. First, there is an unwanted curvilinear re-
lationship between the two axes—the second axis is merely a
quadratic function of the first axis (usually called a “horseshoe
shape”). The second axis thus provides no more summary of the
data than does the first axis, but merely distorts the same pattern.
Second, there is misrepresentation of the positions of the points
along the ordination axes—there is contraction at the ends of the
horseshoe so that many hundreds of points are clustered together,
while the points near the middle of the horseshoe are reasonably
well separated. When looking at such an arch and contraction,
we cannot tell whether it is a real pattern or an artefact. It is safer
to assume the latter, because these distortions are well-known po-
tential by-products of eigenanalysis ordinations. Furthermore, an
agglomerative clustering analysis of the same data indicates that
three of the four main clusters are within the right-hand con-
traction, so that this analysis is certainly finding something that
the ordination is not. Note that the distortion is known to be an
effect of the eigenanalysis itself (i.e., the decomposition of the
association matrix into eigenvectors, often called generalized sin-
gular value decomposition) rather than of the similarity measure
or standardization.



plaid technique of Lazzeroni and Owen, 2002, which allows
objects to be in more than one group or not in a group at all).
More to the point, both agglomerative and divisive clustering
are based on the assumption that the relationships among the
objects are hierarchical, and there is actually no evidence for
the existence of such relationships in biological functions of
different genes (Szabo et al., 2002). Consequently, it is inad-
visable to interpret the details of multivariate pattern analyses
too closely—pattern analyses are a preliminary (exploratory)
step rather than an end in themselves. In particular, confirma-
tory evidence from some other experimental procedure (e.g.,
Northern blots, real-time PCR, RNase protection assays, in situ
hybridization; Chuaqui et al., 2002) needs to be acquired for
all microarray experiments, as the technology itself is still not
very robust (Bakay et al., 2002; Kothapalli et al., 2002; Kuo et
al., 2002; Li et al, 2002; Novak et al, 2002; Wierling et al.,
2002). If nothing else, technical issues such as crosshybridiza-
tion and nonspecific binding mean that all microarray data
should be treated with some caution (Chuaqui et al., 2002).

Recently, therefore, statisticians have turned their attention
to the possible assessment of statistical significance for the pat-
terns found by multivariate analyses, irrespective of whether
they are supervised or unsupervised. These analyses are not
amenable to the traditional parametric approaches, because we
cannot specify the necessary information required for calculat-
ing the probabilities (e.g., the underlying frequency distribu-
tions). So, the approaches are necessarily nonparametric. The
approach that has shown most promise is the use of a random-
ization test. The name derives from the fact that we are gener-
ating the statistical null hypothesis (i.e., a random pattern) by
randomizing the dataset itself.

A randomization test generates the statistical null hypothe-
sis by calculating all of the possible permutations of the dataset,
which is all of the possible arrangements of the observations
into patterns that could arise from the original experimental de-
sign. These permutations are what would be expected if the null
hypothesis was true. So, the mathematical calculations are per-
formed on the original dataset; then the set of permutations is
produced, and the mathematical calculations are performed on
each of these permutations. The pattern produced by these per-
mutations is treated as being the relevant one for the null hy-
pothesis (i.e., that expected by random chance); and so the cal-
culations from the original dataset are compared to those from
the permutations. If the original data produce a pattern that is
more extreme (e.g., stronger) than those produced by the per-
mutations, then it can be considered to be statistically signifi-
cant (e.g., if the original data has a pattern that is stronger than
those produced by .95% of the permutations then the pattern
is statistically significant at P , 0.05).

The basic practical problem with randomization tests is that
the number of possible permutations of the dataset increases
exponentially with increases in the number of observations. It
is thus a time-consuming exercise to generate all possible per-
mutations, and for large datasets it is completely impractical.
The usual solution to this problem is to generate only a sample
of the possible permutations, using Monte Carlo simulations.
The randomization tests are then called resampling tests. A suf-
ficiently large number of samples needs to be taken in order to
generate a reasonable approximation to the set of all permuta-
tions, usually in the order of 2–5000 (Manly, 1997). Clearly,

randomization tests were not possible in practice before the ad-
vent of computers.

Three distinct but related approaches to resampling have
been developed (see Manly, 1997, for the details):

1. permutations—this generates samples that are exactly the
same size as the original dataset but which have relation-
ships among the data variables randomly jumbled. So, to
generate each resampled dataset the observations for each
data variable are randomly rearranged among the sampling
units (i.e., sampling without replacement);

2. bootstrapping—this also generates samples that are exactly
the same size as the original dataset but which have each of
the data variables sampled with replacement. So, to gener-
ate each resampled dataset the observations for each data
variable are randomly sampled from among the sampling
units in such a manner that each observation could appear
more than once in each resampled dataset (while others
might not appear at all); and

3. jackknifing—this generates samples that are smaller than the
original dataset and which are sampled without replacement.
So, the proportional size of the resampled dataset needs to
be specified. The most common versions are delete-one sam-
pling, in which each resampled dataset has one less sam-
pling unit than in the original set, and delete-half sampling,
in which each resampled dataset is half the size of the orig-
inal set.

In general, statisticians use permutations when performing
hypothesis tests (such as t-tests, analysis of variance, or corre-
lation), bootstrapping for creating summaries of variability or
accuracy (such as standard deviations, standard errors, or con-
fidence intervals), and jackknifing for crossvalidation assess-
ments.

All three techniques have been applied to microarray data at
one time or another. For example, Heyer et al. (1999) use jack-
knifing to deal with outlying values in multivariate data analy-
sis, Kerr and Churchill (2001c) use bootstrapping to assess the
reliability of clusters derived from clustering analyses (techni-
cally, they bootstrap the residuals from an analysis of variance
rather than bootstrapping the variables) and Yeung et al. (2001)
use jackknifing for the same purpose, Tibshirani et al. (2001b)
use permutations to assess the “optimal” number of clusters in
a dataset, while Tibshirani et al. (2001a) use jackknifing for the
same purpose, Radmacher et al. (2002) employ permutation to
quantify the significance of prediction results, and McShane et
al. (2002) use permutation to assess the degree of clustering
present in the dataset (technically, they permute nearest-neigh-
bor distances in a PCA ordination rather than permuting the
variables).

An important point to remember is that it is not straightfor-
ward to apply statistical analyses to unsupervised clustering or
ordination, because statistical hypothesis testing requires inde-
pendence. For example, in the hypothesis-testing scenario de-
scribed above the pattern being tested is specified before the
data are collected, and so the data can be used validly to test
the pattern (because the pattern and the data are independent of
each other). However, in unsupervised techniques the pattern
is derived from the data and therefore the same data cannot be
used to test that pattern. Hence, neither the bootstrapping method
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of Kerr and Churchill (2001c) nor the permutation method of
McShane et al. (2002) can be used to estimate the probability
that two clusters are “significantly different” from each other,
for example—the methods are designed to assess the stability
of the clusters instead.

It is, however, possible to statistically compare two datasets
to assess whether they contain the same pattern (e.g., gene ex-
pression data in one dataset and some other biological infor-
mation in the other dataset), provided the two datasets are in-
dependent of each other (Jongman et al., 1995). So, if we wish
to examine the relationship between the microarray dataset and
any covariables for which we might also have data, then this
can be done in a multivariate fashion. That is, we can treat the
covariables as a second dataset, and we can look for general
patterns that the two datasets have in common. For microarray
data, this can be done most effectively using the Mantel test
(Shannon et al., 2002). This is a generalization of correlation
(and regression) analysis, where a single correlation value is
used to describe the overall relationships between the two
datasets rather than between each pair of variables. The corre-
lation value can be statistically tested using permutation test-
ing. Alternatively, Chapman et al. (2001) and Landgrebe et al.
(2002) have shown the advantages of using biplots for dis-
playing the results of both unconstrained (e.g., PCA, CA) and
constrained (e.g., RDA or CCA using continuous variables) or-
dination information, which is an alternative approach to the
same problem, and which can also be tested using permutations.
Similarly, Tibshirani et al. (2002b) using clustering in combi-
nation with correlation analysis, followed by permutation test-
ing. Alternatively, LeBlanc et al. (2003) take a more direct ap-
proach by using a reference gene, which is highly related to the
external biological information, to rank the other genes.

As a final point, it is worth noting that most of the multi-
variate techniques cannot deal with “missing” data, unlike the
hypothesis-testing techniques discussed in the previous section.
Data are missing if an observation is not collected for every
variable for every sample unit, and this is a common occur-
rence in microarray studies because there can be numerous tech-
nical reasons why some genes are not detectably expressed on
some arrays (Troyanskaya et al., 2001). Unfortunately, the
mathematical calculations cannot proceed under these circum-
stances, and so this situation must be explicitly dealt with. It is
possible to drop either the offending genes or arrays from the
analysis, and then to proceed. However, this is rather extreme
if it is the array that is to be dropped (why drop all of the data
from an array just because a few genes were not expressed?),
and so this is not recommended. Dropping those genes with
missing data is more feasible, but this will mean that poten-
tially important genes may be missed in the analysis. There-
fore, many imputation methods have been developed that will
supply estimates for the values of any missing observations
(Schafer, 1997; Allison, 2001), so that the data analysis can
then proceed normally. Several of these methods have been
evaluated for microarray data (Troyanskaya et al., 2001), with
another proposal from Wernisch et al. (2003).

However, it is important to recognize that all imputation
methods assume that the data are missing at random from the
dataset, and this may not be true for microarray data. For ex-
ample, lowly expressed genes may have many missing data be-
cause the expression levels are hard to detect, or one of the ar-

rays might be faulty. Data that are below the detection limit
may not be missing at random (and most evaluations of impu-
tation methods have been based on data that are missing com-
pletely at random). The best strategy may therefore be some
combination of gene deletion and imputation, deleting those
genes with more than one to two missing observations and then
imputing any remaining missing data. A rough guideline may
be that 0–5% missing data are unlikely to cause analysis prob-
lems even if the data are not missing at random, while 5–10%
missing data can be imputed safely using a reputable technique,
and .10% missing data will require specialist techniques for
analysis. Faulty arrays should always be deleted from the data
analysis, of course.

EXPERIMENTAL DESIGN

The sheer size of datasets that can be collected in microar-
ray experiments has apparently tempted some people to assume
that the data can be collected in an ad hoc manner, based on
the naive assumption that the “truth” will be revealed by the
sheer weight of numbers (Simon et al., 2002). This is unlikely
to be a realistic expectation, and it will always be best for ex-
periments to be carefully planned in the light of an explicit hy-
pothesis. If the data are to form useful scientific evidence then
they must be collected in a “designed” manner, and experi-
mental design is as important for microarray experiments as it
is for any other type of experiment (Churchill, 2002).

Clearly, the analysis of data is intimately related to the de-
sign of the experiment from which the data came—for the anal-
ysis to be successful its characteristics and assumptions must
match those of the experimental data. Thus, statisticians have
traditionally seen experimental design as a subbranch of statis-
tics (dating from the seminal works of Fisher, 1935, and Yates,
1937). While biologists are likely to think that this attitude is
a bit extreme (e.g., most biologists can design successful ex-
periments with only the remotest knowledge of statistics), it is
undeniable that close attention during the design phase to the
form of the intended data analysis will greatly improve the
chances that the experiment will successfully answer the ques-
tion being examined. Sadly, this simple concept has not yet be-
come standard practice in microarray experiments (Y.H. Yang
and Speed, 2002), and so a brief discussion of the important is-
sues is worthwhile here.

It is worth pointing out before we start that there are two
distinct types of scientific experiments: manipulative (or in-
tervention) experiments and descriptive (or observational) ex-
periments. Descriptive experiments are those where the sci-
entist does not try to modify the world in the process of the
experiment (i.e., by manipulating the experimental condi-
tions), whereas in manipulative experiments the scientist does
modify the experimental conditions. Thus, manipulative ex-
periments test hypotheses about processes while descriptive
experiments test hypotheses about patterns. Most microarray
experiments to date have been descriptive, but this does not
mean that they must be so. Indeed, the two experiments for
which we provide an example data analysis in the final sec-
tion of this paper are clearly manipulative ones. Even though
much is often made in the literature about the differences be-
tween these two types of experiments, from the point of view
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of successful experimental design there is sometimes very lit-
tle to choose between them.

Design

Experimental design is all about deciding how to deal with
unwanted sources of variation in an experiment (Simon et al.,
2002). That is, we have an experimental question that concerns
some particular source of biological variation (e.g., the relative
effects of some experimental treatments, changing phenotypic
expression during development, etc.) and to study this we wish
to isolate it from the seemingly infinite other types of variation
that occur in the universe—if we can separate out its pattern
then we can see it clearly and thereby evaluate its relative im-
portance. The other (unwanted) types of variation can include
both biological variation (e.g., between tissues, between indi-
viduals, between populations, between species) as well as ex-
perimental or technical variation (e.g., between probes, between
reactions, between dyes, between extractions). The sources of
variation that we want to study are the “interesting variation”
while the unwanted sources are the “obscuring variation.”

There are three main ways that scientists have developed for
dealing with unwanted sources of variation: (1) eliminate them,
either by controlling the experimental conditions or by having
an explicit control treatment; (2) randomize their effect, by hav-
ing replicate samples; and (3) incorporating their effect into the
data analysis, either as part of the preprocessing or as part of
the quantitative analysis.

These strategies are not mutually exclusive, and they all
should ideally play a part in most, if not all, biological exper-
iments. As an example of the distinction between them, con-
sider the unwanted variation caused by spatial irregularities
within an array, which can affect the measurement of intensity
for each gene. To deal with this problem we could try to im-
prove the technology to manufacture near-perfect arrays, thus
eliminating the problem—this would be strategy (1). Alterna-
tively, we could also use several arrays for each experimental
group, expecting that the spatial variation would “average out”
across the replicates when we take their mean—this would be
strategy (2). Finally, we could collect the data from a single im-
perfect array and adjust them mathematically afterwards to cor-
rect for the irregularities—this would be strategy (3). Currently,
we use the latter approach, which is what preprocessing the data
by normalization is all about. This does not, of course, stop the
manufacturers from working on option (1), or us from also us-
ing option (2).

Laboratory scientists have always favored the first of these
three strategies (which is why they devised laboratories in the
first place). However, this strategy has the limitation that it is
logically invalid to extrapolate the experimental results beyond
the confines of the particular laboratory conditions used for the
experiment. Many molecular biologists have apparently not
worried much about this problem, as they seem to be quite
happy to assume that their results can be generalized without
further quantitative demonstration that this assumption is valid.
In contrast, the advantage of the second strategy (replication)
is that it explicitly demonstrates the generality of the experi-
mental results, and it can be argued that proper replication is
therefore a feature of all worthwhile experiments. This issue
will be dealt with below. The third strategy (data processing)

has been discussed in some detail in the preceding sections, and
only one further comment will be made below.

Replication

Replication is at the heart of all statistical analyses, as it is
the key to reliable inference from a sample to a population. It
is the repetition of a pattern across a series of replicates that
provides the convincing evidence that the pattern is real, be-
cause the repetition is unlikely to occur by chance. Most data
analyses perform badly with only small amounts of replication,
and if microarray experiments are poorly replicated then the
tests are best treated as exploratory tools rather than as useful
tests of scientific hypotheses (Long et al., 2001). However, even
when used as exploratory tools replication of arrays is benefi-
cial (Dougherty et al., 2002; Medvedovic and Sivaganesan,
2002).

Lack of replication has been a recurring comment with re-
spect to microarrays. In fact, most of the hypothesis-testing
techniques that have been proposed are designed specifically to
try to get patterns out of the datasets in the face of extremely
poor replication (or even entire lack of it). This situation seems
to have arisen because of the focus of attention on the genomic
aspects of the technology—the fascination with the sheer num-
ber of genes that can be incorporated into an experiment has
drawn attention away from the other aspects of the experimen-
tal design. Furthermore, attention has focussed on sampling as
many experimental conditions as possible with the limited num-
ber of arrays available, which must be at the expense of using
those arrays for replicate sampling of the conditions. Presum-
ably things will settle down soon, and replication will be seen
as just as fundamental for array experiments as it is in all other
areas of biology.

If replication is to be used then it is necessary to understand
the essential features of what a replicate must be. The most im-
portant feature for true replication is that the replicated objects
must be independent of each other—that is, a replicate is the
smallest unit to which an independent application of the ex-
perimental procedures is applied. In microarray experiments it
is frequently assumed that the individual spots on the slide or
chip are the fundamental units that need to be replicated, be-
cause each spot is a separate application of a particular nucle-
otide sequence. However, repeated placement of the same se-
quence on a single slide/chip is not true independent replication,
because the entire chip/slide is treated as a single experimental
unit at some subsequent stages of the laboratory protocol (e.g.,
application of the test sample, and the ensuing hybridization,
washing, and scanning). Consequently, it is the arrays that also
need to be replicated, not just the spots/probes, because it is the
arrays that are the “independent experiments” that can be used
as “true replicates” in the data analyses.

The spots and probes can also be replicated if desired, but
these are not independent replicates. This is often referred to as
pseudoreplication (Hurlbert, 1984), to distinguish it from proper
independent replication such as is assumed by the data analy-
sis techniques discussed in the preceding sections. The most
common form of experimental design for microarrays usually
has no true replication (Y.H. Yang and Speed, 2002), and so
the importance of this design feature is apparently either not
understood by many biologists or is undervalued. One appar-
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ent disincentive to proper replication is the financial cost of
replicating arrays, but this cannot be allowed to outweigh sci-
entific rigour (Firestein and Pisetsky, 2002).

Another way of thinking about replication (i.e., other than
independence) is that it is supposed to be dealing with sources
of variation. Microarray experiments have several distinct
sources of variation, including variation among spots within an
array (which is measurement error) and variation among arrays,
both of which are technical errors, and variation among sam-
ples, which is biological variation (Churchill, 2002). Replica-
tion can be used to dispense with all three sources of variation,
but different things need to be replicated in each case.

In a microarray experiment there are several sources of tech-
nical variation to be dealt with (summarized by Li et al., 2002),
and replicating spots on a single array will only deal with some
of them while replicating arrays will deal with others. Since it
is recognized that arrays are inherently variable (Bakay et al.,
2002; Li et al., 2002; Nadon and Shoemaker, 2002; Novak et
al., 2002; Simon et al., 2002), the arrays must be replicated to
deal with this source of variation, because many of the sources
of technical variation are beyond the experimenter’s control.
This is particularly true for genes expressed at low levels, which
are almost always observed to be poorly reproducible in repli-
cate arrays.

This raises the question of how many replicates should be
used in a microarray experiment to deal with technical varia-
tion. There is no simple answer to this question, as the answer
will vary from experiment to experiment because the relative
expression levels vary from gene to gene and sample to sam-
ple, and there are actually several competing criteria to be con-
sidered. However, the consensus seems to be that at least three
arrays is probably a good compromise between the various com-
peting criteria (M.L.-T. Lee et al., 2000; Black and Doerge,
2002; Grant et al., 2002; Novak et al., 2002), and five arrays
might be sufficient to detect a 1.5-fold change in expression
level (Gibson, 2002; Wierling et al., 2002). It is unlikely that
a twofold change could ever be reliably detected with a single
array, given the amount of technical variation involved (Li et
al., 2002; Wierling et al., 2002).

Perhaps a more important issue is the biological variation that
may need to be dealt with by replication. If we wish to general-
ize to a large biological population (such as a tissue or a cell line)
then taking a single extraction is clearly inadequate, as it will not
deal with physiological variation. Furthermore, if we wish to gen-
eralize to an even larger biological population (such as a species)
then taking a sample from a single individual is clearly inade-
quate—we will have eliminated interindividual variation (i.e.,
phenotypic and genotypic variation) from the experiment and
thus cannot validly generalize beyond that single individual.
Replicating biological samples, as well as experimental samples,
is thus an issue that deserves closer attention, because it is likely
to be the biggest source of variation in microarray studies (Bakay
et al., 2002; Novak et al., 2002). Perhaps the most important lim-
itation here is that biological variation can result in heterogeneous
samples (e.g., mixed tissues from a single individual). Current
data analysis techniques are ill-equipped to deal with heteroge-
neous samples, and the interpretation of their results can there-
fore be problematic (Grant et al., 2002). It is thus sometimes rec-
ommended that only homogeneous cell populations should be
used (Firestein and Pisetsky, 2002).

The question of how many replicates should be used to deal
with biological variation is even more problematic to answer
than is the question of technical variation. The standard statis-
tical technique is to use what is called “power analysis,” and
this is discussed in more detail below.

A related question is how best to evaluate the repeatability
of experimental replicates, either replicate spots on a single ar-
ray or replicate arrays. One common suggestion is to plot one
replicate against the other and then to measure the statistical
correlation between them. However, this has long been recog-
nized to be a poor method (Bland and Altman 1986), despite
its very common use in microarray studies. It is likely to be an
invalid use of correlation analysis because it will overestimate
the reproducibility of the two replicates. A far better alterna-
tive (Hess et al., 2001; Wang et al., 2002b) is to produce a
mean-difference plot for each pair of replicates, which is a scat-
terplot showing the difference between the paired observations
(vertically) and their mean (horizontally). This is conceptually
the same as the MA plot described above. It involves a 45° ro-
tation of the scatterplot and a rescaling, compared to the stan-
dard plot. The rotation makes the plot more easily interpreted,
because the differences between the replicates are confined to
the vertical dimension (rather than being confounded across
both dimensions as they are on the standard plot), and the rescal-
ing helps emphasize differences at the equally important low
expression levels (which in the standard plot get swamped by
the higher expression levels).

Treatments

A different but related design issue is that if only one ex-
perimental treatment is applied per array then the array clearly
needs to be replicated. That is, the experimental treatment needs
to be applied separately to several arrays. If this is not done
then it will be impossible logically to distinguish between the
effects of the experimental treatments and the effects of differ-
ences between individual arrays. That is, if the expression of a
gene is observed to be different between two arrays each con-
taining a separate treatment, then is this difference caused by
the inherent variability between arrays or by the influence of
the experimental treatments?—we can’t know. When it is im-
possible to distinguish between two effects in an experiment
this is referred to as a confounded experimental design, and un-
wanted confounding is the cardinal sin that can be committed
by an experimenter. A confounded design cannot be used to an-
swer the experimental question convincingly, so it is of little
value to a scientist.

In this regard, it is important to note that the experimental unit
in a microarray experiment is an array, which may also be the
unit used to deal with biological variation (since each array has
a single biological sample applied to it). This can cause confu-
sion about replication, because replicating arrays does not nec-
essarily mean that there is replication of the experimental treat-
ments. Replication of the treatments involves independent
application of the experimental manipulation, as explained above,
and replication of biological samples does not necessarily achieve
this. For example, if several biological samples are subjected to
a single experimental manipulation simultaneously, and each
sample is then applied to a separate array, there will be biologi-
cal replication but no replication of the experimental treatment.
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If two experimental treatments can be applied per array (as
they must be when using both red and green dyes in a cDNA
array, for example), then clearly the comparison of those two
experimental treatments can be made without the confounding
influence of variability between arrays (i.e., the unwanted ef-
fect of interarray variation has been eliminated from the com-
parison). However, this does not relieve the experimenter of the
necessity for replicating arrays. If arrays are inherently vari-
able, then how do we know that the experimental result is not
unique to this one particular slide? If we wish to generalize be-
yond the confines of that one array, then replicate arrays are
necessary to demonstrate the generality. In particular, dye-swap
(or reverse labelled) pairs are the best design for two experi-
mental treatments (i.e., pairs of arrays in which the dye as-
signments are oppositein each member).

For cDNA arrays, an equally pressing point if two experi-
mental treatments are applied per array is deciding which two
treatments should be hybridized together on the same slide
when there are more than two treatments being included in the
experiment. This is important because there is more experi-
mental variation between arrays than there is within arrays. 
This general issue has been addressed in detail by statisticians,
and the application of the relevant points has been made to

microarray experiments (e.g., Kerr and Churchill, 2001a;
Churchill, 2002; Dobbin and Simon, 2002; Glonek and
Solomon, 2002; Speed and Yang, 2002).

The important design issues are the “power” and “statistical
efficiency” of the subsequent data analysis. The first criterion
refers to the ability of the analysis to detect a pattern in the data
when it is really there, and the second refers to minimizing the
amount of resources used for achieving that power. These are
clearly important criteria for experimenters, as failing to find a
real pattern would be disastrous, and we all want to maximize
the use of our limited resources. The most common form of de-
sign for microarray experiments is still the reference design, in
which the second experimental treatment on each slide is merely
the reference DNA sample that is being used for data stan-
dardization (see Fig. 3a). However, this is not necessarily the
most efficient way to organize things, as it will usually produce
a larger variance than will a direct design (see Fig. 3b), in which
the comparisons of direct importance for the experimental hy-
pothesis are made on each array (Glonek and Solomon, 2002;
Speed and Yang, 2002). Therefore, more useful information
will be obtained from the same number of arrays for a direct

design compared to a reference design, because the technical
variation is dealt with more efficiently by the direct design.

To a biologist, however, there are a number of advantages
to using a reference design as opposed to a direct design. For
example, the data derived from a reference design have intu-
itive and obvious biological interpretation because the experi-
mental effects are all independently measured relative to the
same standard. That is, if we are comparing two experimental
treatments, A and B, using a reference design, then in the ex-
periment we measure A and B independently and we subse-
quently work out their relative effects by calculating their dif-
ference (B 2 A). Using a direct design, however, we work out
B 2 A directly, without ever estimating either B or A on their
own. This means that we know their relative effects, which is
the point of interest in the experiment, and we will have more
efficient estimates of the appropriate numbers. However, biol-
ogists are also used to knowing both A and B, as these may
have additional biological interest, and they seem to feel more
comfortable with this approach, even if it is statistically less ef-
ficient. In addition, data analysis of a reference design is usu-
ally straightforward, being in principle no different to what bi-
ologists are used to. A direct design, on the other hand, requires
modeling of the effects sizes (i.e., B 2 A), which is not neces-
sarily straightforward for microarray studies and has not yet
been resolved in any really satisfactory manner (Lönnstedt et
al., 2001). Furthermore, using reference samples allows the ex-
periment to be conducted over an extended period of time, be-
cause all of the experimental samples do not have to be ready
at the same time (which they obviously do if direct compar-
isons are involved).

When using a reference, it is important to note that unless a
dye-swap design is used then the treatment effects and the dye
effects will be confounded (Kerr and Churchill, 2001a;
Churchill, 2002). This involves using two replicate arrays for
each comparison, one using the red dye for the experimental
sample and the green dye for the reference sample, and the other
using the red dye for the reference sample and the green dye
for the experimental sample.

Churchill (2002), Dobbin and Simon (2002), Simon et al.
(2002), and Yang and Speed (2002) provide recent summaries
and critiques of possible experimental designs that achieve max-
imum statistical efficiency, including extended direct designs
such as loop designs. In this regard, if is worth noting that the
reference design makes all comparisons between experimental
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FIG. 3. Experimental designs for the hybridizations of the samples onto the cDNA microarrays in (a) the experiment of Ma-
trajt et al. (2002), (b) a statistically more efficient design for the experiment of Matrajt et al. (2002), and (c) the experiment of
Singh et al. (2002). The labels indicate the source of the cDNA samples (e.g., “Parental Tachyzoite” indicates the parental strain
grown under tachyzoite conditions). Each arrow represents a single microarray, with the head of the arrow indicating the sam-
ple that was labeled with the green dye and the tail indicating the sample that was labeled with the red dye.



samples with the same statistical efficiency, even if that effi-
ciency is lower than for some other designs that might be ap-
plied in particular situations. The efficiency of loop designs will
vary from one situation to another.

Power analysis

The question of how many replicates should be used to deal
with biological variation is an important one to answer. In sta-
tistics, this is dealt with via power analysis (Nadon and Shoe-
maker, 2002).

Power analysis is the investigation of the relationships be-
tween five aspects of statistical hypothesis tests: the probabil-
ity of falsely rejecting a true null hypothesis (i.e., Type I error
mentioned above); the probability of correctly accepting a true
null hypothesis (called power); the sample size (i.e., the num-
ber of replicates); the variability of the data (i.e., the variation
among sampling units); and the size of the pattern to be de-
tected (i.e., the biological effect size).

So, the power of a specific statistical test can be estimated—
given specified values for the size of the biological effect (e.g.,
the means), the variation among the sampling units (e.g., the
standard deviations), the number of sampling units, and the
probability of a Type I error, then the power can be calculated.
In fact, given values for any four of these five characteristics
then the fifth one can be calculated. This allows us to estimate,
for example, the sample size necessary to detect a particular bi-
ological pattern, or the minimum biological effect size that can
be detected with a given sample size. It is the estimation of
sample size that is of most relevance here.

Power analysis has two main uses. First, it can be used to
aid in the design and planning of the experiment (i.e., a prospec-
tive analysis). If there is prior knowledge about the likely size
of the pattern and the likely variability of the data (e.g., from
previous studies), then the power analysis will indicate the sam-
ple size needed to detect the pattern. Alternatively, given the
same information and a specified sample size, the power of the
analysis can be evaluated; or given the power and the sample
size, the size of the pattern capable of being detected can be
calculated. The experimenter can then evaluate the potential
usefulness of conducting the proposed experiment.

Second, power analysis can be used to evaluate any non-
significant results from the statistical analyses in an experiment
(i.e., a retrospective analysis). The actual power inherent in the
analysis can be calculated, and consequently, the ability of the
experiment to detect the hypothesized pattern can be evaluated.
Note that the “hypothesized pattern” should be one that is
thought to be biologically important, rather than merely the one
observed in the experiment. The experimenter can then objec-
tively assess the success of the experiment—was the failure to
detect a pattern because there really was no pattern or was it
because the experimental design made it unlikely that the real
pattern would be detected?

Power analysis can be difficult to apply to microarray ex-
periments because not all of the necessary information will nec-
essarily be available (e.g., we would need to know the vari-
ability of the expected gene expression levels). Black and
Doerge (2002), Yang and Speed (2002), and Simon et al. (2002)
discuss some possible strategies. Furthermore, if nonparamet-
ric procedures are to be used for the data analysis then non-

parametric power analysis needs to be used, and this is more
complicated to carry out than parametric power analysis (re-
quiring permutations or bootstraps; see Black and Doerge,
2002). More general books about power analysis and sample-
size estimation include those of Kraemer and Thiemann (1987),
Cohen (1988), Desu and Raghavarao (1990), and Lipsey (1990).

Methods of power analysis exist for most statistical hypoth-
esis-testing procedures. However, a particular problem is the
application of power analysis to multivariate datasets, as there
is no intuitively obvious way to do it. Measuring the size of the
biological effect is not straightforward for multivariate data, and
there are several aspects of the data analysis that are affected
by the variation among the sampling units. Therefore, sample
size affects the precision of the analysis (i.e., how representa-
tive the sample is of the true population) and the stability of the
results (i.e., variability across repeated sampling) in complex
ways (MacCallum et al., 1999), and it is rare that general sug-
gestions can be made about sample size and power for multi-
variate datasets. Nevertheless, Hwang et al. (2002) have made
one specific suggestion for microarray data.

EXAMPLE ANALYSES OF 
MICROARRAY DATA

Many of the points made above might be clearer if we look
at a specific example or two. Here we will particularly con-
sider: unsupervised multivariate analysis, multifactorial analy-
sis of variance for complex experimental designs, the use of
permutations in relation to violation of statistical assumptions,
multiple hypothesis testing, and power analysis with reference
to replication.

We will consider the analysis of two published datasets.
These data can be analysed in various ways to illustrate some
of the theoretical points made in previous sections. The two sets
of data are based on quite similar experiments, but the prob-
lems encountered in the data analyses are quite different, and
they will be used to illustrate different topics. This will high-
light the need for careful thought about how to proceed with
the analysis of microarray data.

We have restricted ourselves almost entirely to standard sta-
tistical techniques, as no really good reason has yet been given
for deviating from them for the analysis of microarray experi-
ments. In particular, we have used the standard framework of
analysis of variance, which is specifically designed for repli-
cated multifactorial experimental designs. Almost all of the
“problems” identified in the literature with respect to the anal-
ysis of microarray data stem from a lack of replication in the
experiments, not from any inherent characteristics of microar-
rays themselves. We are therefore looking to the future rather
than the past, on the assumption that replication will shortly in-
crease to an acceptable level.

Note that what we are doing here is attempting to show some
of the possibilities for microarray data analysis, and to make
some important points about the design of array experiments.
We are not attempting a reanalysis of the data from these ex-
periments, nor are we trying to provide a definitive analysis of
these data. There is no necessary reason why our analyses
should produce the same conclusions as those reached by the
original authors. In particular, we have restricted ourselves
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solely to those subsets of the data that appeared to us to be
“complete” for the analyses that we wished to do. Our empha-
sis is very much on evaluating the quality of the data used to
draw scientific inferences. Furthermore, we cannot give a de-
tailed biological interpretation of the results for either experi-
ment, because the information accompanying the datasets is in-
complete. This means that we may also have misinterpreted
some aspects of the data and how it was collected. Standards
have recently been proposed for the information content of pub-
lished microarray datasets that are to be archived (e.g., Brazma
et al., 2001; Spellman et al., 2002), and we recommend that
everyone support these attempts at appropriate standardization.

Finally, the data analyses that we discuss here can be car-
ried out via a wide variety of computer programs. We have
used an arbitrary selection here, and our use of these partic-
ular programs should not be seen as a recommendation. Far
more convenient forms of microarray data analysis are likely
to be in the pipeline. However, in science, an explicit state-
ment should always be made about which programs have been
used, and which versions of these programs, just as the de-
tails of equipment and chemicals are provided for laboratory
protocols.

First dataset

Matrajt et al. (2002) describe a study conducted with Toxo-
plasma gondii (Apicomplexa), in which the biology of conver-
sion between the tachyzoite and bradyzoite life cycle stages in
vitro were studied by gene expression profiling. This study in-
cluded mutant strains which lacked the ability to form brady-
zoites compared to a parental line. Thus, the main purpose of
this study was to investigate the changes in gene expression
during stage conversion, thereby providing an insight into the
mechanisms of this process. As part of their experimental plan
they performed a microarray experiment to examine stage-spe-
cific expression on a large number of genes. They used a ref-
erence design, in which each of the experimental samples was
compared to a reference sample on each array slide. The
processed data from this experiment are available at
www.blackwell-science.com/products/suppmat/mole/mole
2904/mmi2904sm.htm, with the original array data in the Stan-
ford Microarray Database (http://genome5-www.stanford.edu).

We can start the discussion by thinking about the experi-
mental design itself. Part of this design process involves con-
sideration of which cDNA samples should be hybridized to-
gether on each array. This particular experiment involved a
dye-swap reference design, as shown in Figure 3a. That is, each
array involved a comparison between a cDNA sample from one
of the experimental conditions and a reference sample. Fur-
thermore, each of these comparisons involved two arrays, one
with the reference sample labeled with the green dye and one
with it labeled using the red dye. So, there was a total of eight
arrays used for the experiment (i.e., the eight arrows shown in
the figure). Statistical considerations suggest that there is actu-
ally a more efficient way to design this sort of experiment us-
ing the same number of arrays, as shown in Figure 3b. This de-
sign does away with the reference sample, and each array is
then used for a direct comparison between two of the experi-
mental cDNA samples. This design is then a dye-swap direct

design. It can actually be performed with only six arrays, if nec-
essary, as explained by Gronek and Solomon (2002).

Let’s start the data analysis by taking a brief look at the ne-
cessity for preprocessing the output from the scanning of the
arrays themselves. Preprocessing involves filtering of the data
followed by standardization. Standardization itself can consist
of transformation and normalization of the intensity values.

As far as filtering is concerned, we are told for this experi-
ment that “no value was entered for poor-quality spots (based
on measurements of pixel distribution and background fluores-
cence).” The unwanted effect of background fluorescence is
usually dealt with by subtracting the median background fluo-
rescence intensity from each of the spot intensities for both of
the dyes. At this stage some of the spots will be considered un-
suable because the spot intentsity is less than the median back-
ground intensity. As an example, array number 17081 (which
involved a comparison of cDNA from the parental strain grown
under bradyzoite conditions and the reference cDNA) has 5376
spots, 206 of which have intensities less than the median back-
ground intensity for one of the two dyes. This leaves 5170 po-
tentially usable spots.

Transformation of the intensities usually involves taking the
log2 value of the ratio of the background-corrected intensity of
the sample dye to that of the reference dye. This corrects for
the lognormal frequency distribution of the intensities, which
results from the multiplicative effects of changes in expression
among the ESTs. Normalization then involves correcting for
unwanted spatial variation in intensity across each microarray.
This can be done most effectively by assessing an MA plot, as
shown in Figure 4 for array number 17081. If there is no un-
wanted spatial variation in intensities across the array then the
ESTs would be randomly scattered around a horizontal line on
such a plot. This is clearly not the case for this array. At low
average intensities the red dye is stronger than the green dye,
as it also is at high intensities, while the reverse is true at
medium intensities. The normalization procedure involves
“straightening out” the curvilinear line shown on the graph,
which is done by subtracting from each spot intensity ratio the
value predicted by the LOESS line (i.e., the normalized y-value
equals the observed y-value minus the y-value predicted by the
line). Note that the spots that are a long way from the LOESS
line are the ones that represent ESTs that are either overex-
pressed (above the line) or underexpressed (below the line).

Having dealt with the normalization of each array, we can
now proceed to consider the biological variability between the
two independent experimental inductions (i.e., the replicate ar-
rays for each experimental condition). Currently, the best way
of comparing the results of replicate microarray experiments is
via a mean-difference plot, as shown in Figure 5 for the T.
gondii data. If the two experiments produced identical results
then the points on the graph would form a horizontal straight
line (the dotted line at y 5 0 on the graph), and vertical devi-
ations from this line represent the between-experiments vari-
ability. In this example, there are two points to note. First, there
is quite a degree of scatter in the points around the line, indi-
cating that there is considerable interexperiment variability.
Therefore, in this system it seems essential to have replicate ex-
periments, as the results of a single experiment might not be
highly repeatable. It is for this reason that we decided to re-
strict all of our subsequent analyses to only those ESTs for
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which there are data for two experiments (i.e., 48% of the orig-
inal number of ESTs).

Note that we have therefore explicitly dealt with missing data
by excluding ESTs with observations lacking for any of the
eight experimental samples. This is quite drastic for this dataset
because it excludes more than half of the ESTs. As an alterna-
tive strategy, we might have included the 908 ESTs for which
only one of their eight observations was missing, by imputing
the missing value for each of these ESTs. However, this would
mean that we were imputing 3.8% of the data, which may be
an unduly large amount of “fake” data. Furthermore, the over-
all data are clearly not missing at random, but are concentrated
in two of the experimental replicates, which have 28 and 37%
of their data missing (the other replicates have only 1–15%
missing data). Also, of the 908 single-missing ESTs 61% have
the missing observation in the same replicate, which is clearly
not a random arrangement and thus makes us doubtful of the
utility of any imputation procedure in this case.

The second point to note about the mean-difference graph is
that the points are evenly scattered around the “expected” line
except in the bottom left-hand corner. This phenomenon is quite
common in microarray experiments, and indicates that small
expression levels (to the left on the graph) are likely to be mea-
sured in a biased fashion. Therefore, small expression values
(underexpressed ESTs) are not to be trusted too much.

An initial experimental question concerning the microarray
data concerns a comparison of the expression fingerprints (or
expression signatures) of the various experimental conditions
(see Fig. 1). That is, we wish to know whether the parental and
mutant parasite strains produce the same relative EST expres-
sion levels under the bradyzoite and tachyzoite cultivation con-
ditions. For illustrative purposes, this may be done by an ex-
ploratory multivariate pattern analysis. To do this, we first
calculate some measure of the pairwise similarity among the
four possible expression fingerprints, and then we display the
resulting patterns in a graph. This is a multivariate data analy-
sis because we are searching for a general (or common) pattern
across a large number of variables (the ESTs). That is, we are
summarizing the pattern shown on average by all of the ESTs,
the pattern being the relationships among the experimental con-
ditions. It is an unsupervised analysis because we are not spec-
ifying exactly what pattern to look for.

A commonly used measure of similarity is the correlation
coefficient, and some possible calculations for this measure are
shown in Table 1 for the T. gondii data. Before we proceed to
display these data in a graph, we can pause to further consider
the effect of the experimental replications on these calculations.
In the top half of the table are shown the correlation values
based on both experiments, using all of the data (in the upper
triangle) and only our preferred subset (in the lower triangle).
Note that while these two datasets produce quite similar results
they are not identical. More importantly, in the bottom half of
the table are shown the correlation values based on each of the
experiments individually. These two datasets do not produce
very similar results at all, thus reemphasizing our claim that
replicate data are needed for the ESTs in this system.
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FIG. 4. MA plot of the two dye intensities from one of the
arrays (no. 17081, parental strain grown under bradyzoite con-
ditions) from the experiment of Matrajt et al. (2002). Each sym-
bol represents one of the 5170 spots, with the horizontal axis
being the average of the background-corrected log2 intensity
values for that EST and the vertical axis being their difference
(red minus green). The solid line is a LOESS smoother (span 5
50%), calculated using the SYSTAT (v. 9.01) program of SPSS
(1998), which shows the nonlinear relationship between the two
variables caused by spatial variation in intensities. The dotted
line is the expected relationship between the two variables if
there was no spatial variation of intensity within the microar-
ray.

FIG. 5. Mean-difference plot of the ESTs from the parental
strain grown under bradyzoite conditions from the experiment
of Matrajt et al. (2002). Each symbol represents one of the 2066
ESTs, with the horizontal axis being the average of the log2 ex-
pression values for that EST from the two experiments and the
vertical axis being their difference.



The patterns are not presented very well visually in such a
table, however. A graphical display of the pattern shown by the
correlation values based on a multidimensional scaling ordina-
tion is therefore shown in Figure 6a. Each point on the graph
represents a single experimental condition, and the closeness of
the points shows how similar are their expression fingerprints.
From this ordination analysis we might conclude that the par-
asite strains grown under tachyzoite conditions produce very
similar expression fingerprints, as expected from the experi-
mental hypothesis being tested, while the parasite strains grown
under bradyzoite conditions produce ones that are quite differ-
ent from each other as well as from the tachyzoite conditions.
Note that these conclusions are not easy to reach just from a
perusal of the original correlation values in the table.

However, this graph does not really allow us easily to test
the original experimental prediction, which was that the mutant
strain grown under bradyzoite conditions (the symbol in the top
left corner of the graph) will produce an expression fingerprint
that is more like that of the strains when grown under tachy-
zoite conditions (the two symbols at the bottom of the graph)
than will the parental strain grown under bradyzoite conditions
(the symbol in the top right corner of the graph). So, we per-
formed a minimum spanning tree analysis (a type of clustering
analysis) of the correlation values as well, to see if this helps
us make this decision, because a combination of ordination and
clustering can often reveal patterns that neither analysis can
alone. The result of this tree analysis is shown on the graph
(Fig. 6a) as the dotted lines. The relative length of the two rel-
evant lines indicates some support for the hypothesis (i.e., the
line on the left is slightly shorter than the one on the right), but
it is hardly convincing evidence.

More to the point, we need to evaluate the robustness of our
conclusions from this analysis. This is an important considera-
tion for all exploratory data analyses, when there is no formal
statistical test of the validity of the interpretation. There are two
possible components to the evaluation here. First, we have data
from two experimental replicates, and it would thus be better
to analyze these separately to see if they produce the same pat-
tern, rather than averaging them as was done above. Second,
we need to know if our conclusions depend on the choice of
similarity measure used (i.e., the metric). We might do this by
also analyzing the data using the Gower coefficient (this is the
standardized version of the Manhattan distance just as the cor-
relation coefficient is the standardized version of the Euclidean
distance).

The results of this robustness evaluation are shown in Fig-
ure 6b. The symbols represent the same things as before, but
this time there is a separate symbol for each of the two exper-
imental replicates. The pairs of similar symbols are clearly near
each other, but they are not in exactly the same spots and this
indicates that there is considerable experimental variation con-
tributing to any conclusions that we might derive from the mul-
tivariate analysis. More importantly, the use of the different
similarity measure has drastically altered the apparent pattern
in the data. The pattern is still not strong, but both the ordina-
tion and the tree analyses indicate that we should reject our hy-
pothesis: the mutant strain grown under bradyzoite conditions
has an expression fingerprint that is less like that of the strains
when grown under tachyzoite conditions than does the parental
strain grown under bradyzoite conditions. Once again, there is

certainly some evidence in the data but it is equivocal, because
our result appears to be sensitive to the choice of similarity mea-
sure.

This brings us to the important issue of power analysis. Part
of the problem encountered in discerning any clear pattern in
these data might be due to the relatively large amount of vari-
ability between the replicate arrays. We might therefore ask
ourselves how many replicate experiments we would need to
make the pattern clearer. This is no easy matter to address for
multivariate pattern analyses, but using the method suggested
by Hwang et al. (2002), we can make a stab at it.

The results of this power analysis are shown in Figure 7.
This graph shows the general form of this type of power anal-
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FIG. 6. Results of the two-dimensional metric multidimen-
sional scaling (MDS) ordination and minimum spanning tree
(MST) analyses, based on the 2066 ESTs from the Matrajt et
al. (2002) data set, of (a) the Pearson correlation coefficients
of the four combinations of the experimental conditions, and
(b) the Gower coefficients of the eight experimental units. For
the ordination analyses, each symbol represents one of the ob-
jects analyzed, and their spatial proximity indicates how simi-
lar they are in terms of their EST expression fingerprints. For
the tree analyses the dotted lines join the most similar objects
based on their EST expression fingerprints. The solid symbols
represent the parental strain and the closed symbols the mutant
strain; the s symbols represent the tachyzoite culture condi-
tions and the e symbols the bradyzoite culture conditions. Cal-
culated using the PATN (v. 3.51) program of Belbin (1995).



ysis. Each of the lines represents a different number of repli-
cates (varying from 2–10 in our example), and shows how the
power (on the vertical axis) changes with variation in the size
of the “biological pattern” to be detected in the data (on the
horizontal axis). Naturally, the power increases as the magni-
tude of the pattern increases, but what we are particularly in-
terested in is how this relationship is affected by the number of
replicates that we use. The graph shows that there are major
improvements in power if we increase the number of replicates
from 2 to 3 or 4, but there are only relatively minor improve-
ments after that. So, we would receive considerable benefits
from even one more replicate (although this is a 50% increase
in the size of the whole experiment!).

Note that the assessment of replication in power analyses ap-
plies only to the sources of variation taken into account by the
replicates actually used—if other sources of variation need to
be dealt with then this may require more replicates. In this ex-
ample, the replicates are apparently replicate experiments per-
formed on the same culture from a single parasite strain. If there
is variability in response to the growing conditions, either be-
tween cultures or between strains, then the experiment cannot
reveal this. The replicates are thus in some ways closer to tech-
nical replicates than to biological replicates.

This brings us to an alternative, and much more appropriate,
set of analyses of the same data. This is actually a “designed”
experiment, in the sense that the experimental manipulations
were carried out by the experimenters. The pattern analysis that
we performed above ignored this fact, merely summarizing the
data and hoping that the data summary was relevant to our ex-
perimental question. We could pursue this form of analysis, for
example, by using one of the multivariate class-prediction
analyses (i.e., a supervised technique) to assess which ESTs are
the ones that show the biggest difference in expression between
the culture conditions and parasite strains. However, such an

approach is not likely to be productive because there are only
two experimental replicates for each of our groups.

Furthermore, while such an approach can be effective for the
exploration of a complex biological situation, it cannot be a
substitute for the rigorous testing of experimental hypotheses
in a designed experiment. It would be better to explicitly take
the experimental design into account in our analysis, in which
case the experiment should properly use hypothesis-testing
analyses rather than exploratory ones. In particular, we chose
to use this example because the experimental design is a bit
more sophisticated than a simple two-sample treatment/control
comparison, such as is most common in biology. It therefore
has interesting potential statistical data analyses, including mul-
tifactorial analysis of variance (ANOVA).

The important point about the experimental design is that it
must match the data analysis that is to be used. That is, the sta-
tistical question being tested should match the experimental
question. In this example, the form of the analysis of variance
should match the experimental question being asked. One of
the most common problems with the use of ANOVA in the bi-
ological literature is using a much simpler design for the anal-
ysis of variance than that specified by the experimental design.

To look at possible hypothesis-testing analyses, we can con-
sider a comparison of the expression profiles of the various
ESTs (see Fig. 1). Each of these profiles is made up of eight
observations, one for each of the replicates of each of the ex-
perimental conditions. Furthermore, these eight observations
can be grouped together in various ways. For example, some
of the observations naturally group together because they come
from the same cultivation condition and others naturally group
together because they come from the same parasite strain. In a
statistical analysis, these various ways of grouping the obser-
vations are called “factors.” Thus, factors are covariables that
form groups of genes or arrays.
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FIG. 7. Power analysis plots of the multivariate data analysis for all sample sizes from 2–10 replicates. The effect size is the
magnitude of the pattern in the dataset, measured as the Pillai trace from a discriminant function analysis of the groups repre-
senting the four combinations of experimental conditions. The power is the probability of correctly accepting a true null hy-
pothesis. Alpha is the probability of falsely rejecting a true null hypothesis, and was set at P 5 0.05. Calculated using the GPower
(v. 2.0f) program of Erdfelder et al. (1996).



The T. gondii experiment was designed so that there are three
factors:

1. Strain—this factor forms two groups, one for data that came
from the parental strain and one for data from the mutant
strain;

2. Cultivation—this factor forms two groups, one for data that
came from the tachyzoite cultivation conditions and one for
data from the bradyzoite cultivation conditions;

3. EST—this factor forms 2066 groups, one for each of the
ESTs.

It is therefore possible to use a statistical test to assess
whether the average expression levels are different between
these various possible groups, which constitute the statistical
hypotheses being tested. The appropriate statistical test is a
three-factor orthogonal analysis of variance, which is a uni-
variate statistical analysis that will simultaneously test several
hypotheses about differences between groups.

In addition, it is possible for each of these three factors to
form interaction groups, and for these interactions also to be
tested in the same analysis. For example, the interaction be-
tween the first two factors forms four groups, one for each of
the four experimental conditions, and it is possible to separately
test whether these four groups differ:

This means that a total of seven statistical hypothesis tests are
carried out as part of the one analysis (three single factors, three
two-factor interactions, and one three-factor interaction).

As discussed in a previous section, when there are multiple
factors in an ANOVA then it is necessary to consider whether
each of the factors is random or fixed. We think that the EST
factor should be treated as random in a screening study such as
this, since the ESTs chosen are an arbitrary selection of all of
the available possibilities (the factor might be fixed for an ar-
ray with a small number of genes or a focus on a specific meta-
bolic pathway). The other two factors in the experiment are
fixed, since in each case they represent the only two possible
groupings that are of interest in this particular experiment.

Before proceeding to the results it is important to emphasize
two points. First, we are doing the analysis of variance as a
screening procedure, to control for the problems of performing
multiple hypothesis tests on the 2066 ESTs. We will only pro-
ceed to test the ESTs individually if the ANOVA indicates that
it is worthwhile to do so. This helps provide protection against
unwarranted conclusions. Second, the most popular forms of
statistical analysis for microarray data, such as significance
analysis of microarrays (SAM), are not currently designed to
handle experimental designs with multiple factors. Conse-
quently, they are inappropriate for analyzing the data here, be-
cause we need to match the statistical analysis to the actual ex-
perimental design.

As an aside, it may be worth noting that, properly speaking,
a factor dealing with variation between the arrays should be in-
cluded in this ANOVA. This is because the ESTs for each ar-
ray are not independent of each other, and so the arrays are ac-
tually not independent replicates with respect to the EST factor.
This array factor would be a random factor nested within the
Strain*Cultivation interaction, and would thus be orthogonal to
the EST factor. We have not included it here because it com-
plicates the analysis unnecessarily, and its inclusion does not
change any of our substantive conclusions.
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There are three possible two-factor interactions that can be
tested by the ANOVA, as well as one three-factor interaction.

TABLE 1. PEARSON CORRELATION COEFFICIENTS AMONG THE ESTS FROM THE MATRAJT ET AL.
(2002) DATA SET, BASED ON FOUR SUBSETS OF THE ENTIRE MICROARRAY DATA

Cultivation
Strain conditions Tachyzoite Bradyzoite Tachyzoite Bradyzoite

Based on the average of both experimentsa

Parental Tachyzoite — 0.754 0.942 0.818
Bradyzoite 0.781 — 0.746 0.706

Mutant Tachyzoite 0.916 0.739 — 0.810
Bradyzoite 0.834 0.727 0.825 —

Based on individual experimentsb

Parental Tachyzoite — 0.761 0.859 0.727
Bradyzoite 0.680 — 0.712 0.740

Mutant Tachyzoite 0.832 0.669 — 0.670
Bradyzoite 0.807 0.626 0.753 —

For each of the subsets, the coefficients are shown for all pairwise combinations of the experimental conditions of parasite
strain (parental versus mutant) and cultivation conditions (tachyzoite versus bradyzoite).

aAbove the diagonal are shown the correlation coefficients for all 4307 ESTs, averaged across both experiments; below the
diagonal are shown the correlation coefficients for only those 2066 ESTs that have data for both experiments, averaged across
both experiments.

bBelow the diagonal are shown the correlation coefficients for the subset of 2066 ESTs based on experiment 1 only, with those
for experiment 2 only above the diagonal.

Parental Mutant

Strain
Parental Mutant

C
u

lt
iv

at
io

n
T

ac
hy

zo
it

e
B

ra
dy

zo
it

e



The results of the analysis of variance are shown in Table
2a, in standard format. This analysis indicates that we should
reject the null hypothesis (i.e., P , 0.05) for each of the seven
hypothesis tests. We are actually most interested in the
Strain*Cultivation interaction, because this is the comparison
of the four groups formed by the experimental conditions. A
summary of the actual expression data analysed for this inter-
action is shown in Figure 8. The ANOVA indicates that the dif-
ferences among these four groups are statistically significant
(as can also be seen from the 95% confidence intervals on the
graph, which do not overlap). The pattern shown here confirms
what we saw from the multivariate pattern analysis: the mutant
strain grown under bradyzoite conditions has an average ex-
pression profile that is less like that of the strains when grown
under tachyzoite conditions than does the parental strain grown
under bradyzoite conditions.

However, the ANOVA also indicates that we must place a
caveat on this conclusion. This is because the three-factor in-
teraction is significant. What this means is that only some of
the ESTs show this pattern (i.e., the one seen in Fig. 8), while
others do not. These other ESTs may show the opposite pattern
or they may show no pattern of differences among the experi-
mental conditions at all. In other words, the results of the ex-
periment are not quite as simple as we have suggested.

To investigate this pattern in more detail we have a number
of options open to us. The basic problem is that we now need
to examine each EST individually, and this brings into play the
multiple-testing problem referred to in a previous section. It
also raises the issue of exactly what testing procedure we might
use to examine each EST. For illustrative purposes, we have
chosen simply to analyse each EST with a two-factor orthogo-
nal analysis of variance, with Strain and Cultivation as the two

factors. This is a somewhat rough-and-ready way of doing it,
but few better procedures have yet been proposed (and it is con-
ceptually quite close to the recommended approach of Dudoit
et al., 2002c). Furthermore, for illustrative purposes we have
performed the probability calculations using the standard (nor-
mal-theory) procedure and also using permutation testing.

A summary of the results of these ANOVAs is shown in
Table 3. Only 48 of the ESTs are shown in the table, leaving
out those for which we have concluded there is not likely to be
a significant pattern. As before, we are only interested in the
two-factor interaction, and thus the table shows those ESTs that
possibly show a significant difference between the four groups
formed by the experimental conditions.

The first thing to note from the table is that the normal-the-
ory probabilities are usually much smaller than are the permu-
tation probabilities. We believe that the permutation probabil-
ities are likely to be more realistic. However, there are in fact
only 105 possible permutations from which to calculate these
probabilities, while it is usually recommended that 5000 per-
mutations be used, and so there may be some limitation here.
Furthermore, we couldn’t use permutations to estimate the prob-
abilities for the three-factor ANOVA above because there are
practical problems, which are discussed further below.

Second, if we are to take the multiple-testing problem seri-
ously, then we would probably conclude that none of these
ESTs individually show any significant pattern at all. This is
because the smallest probability is only p 5 0.00007, which is
not very small given the large number of hypothesis tests that
were performed. This issue of multiple hypothesis testing is also
discussed further below. Finally, if we do accept that some of
these ESTs show a significant pattern, then we can see that the
majority of them do indeed fit the general pattern, although as
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TABLE 2. RESULTS OF THE ANALYSES OF VARIANCE OF THE TWO EST DATA SETS FROM THE MATRAJT ET AL. (2002) DATA SET

Source of Degrees
variation of freedom Mean-square F-value P

(a) Analysis of the expression of the 2066 ESTsa

Strain 1 29.8571 47.129 ,0.00001
Cultivation 1 1094.1318 1642.391 ,0.00001
EST 2065 9.8685 28.804 ,0.00001
Strain*Cultivation 1 121.8546 231.274 ,0.00001
Strain*EST 2065 0.6323 1.846 ,0.00001
Cultivation*EST 2065 0.6662 1.944 ,0.00001
Strain*Cultivation*EST 2065 0.5269 1.538 ,0.00001
Residual 8264 0.3426

(b) Analysis of the induction of the 459 ESTsb

Strain 1 3.1088 4.513 0.03665
Cluster 82 1.5539 3.927 ,0.00001
Strain*Cluster 82 0.6889 1.581 0.00241
EST(Cluster) 376 0.3957 0.908 0.82512
Residual 376 0.4358

aThree-factor orthogonal analysis of the expression data, with Strain and Cultivation as fixed factors and EST as a random fac-
tor. Calculated using the GeneANOVA program of Didier et al. (2002), based on the expected mean-squares derived by the 
DESIGN (v. 3.0) program of Dallal (1988).

bThree-factor mixed analysis of the induction data, with Strain as a fixed factor, Cluster and EST as random factors, and EST
nested within Cluster. Calculated using the SYSTAT (v. 9.01) program of SPSS (1998), based on the expected mean-squares de-
rived by the DESIGN (v. 3.0) program of Dallal (1988).



expected there are also some that show the opposite pattern (i.e.,
the pattern that we originally hypothesized).

It is, of course, good to also have a picture of the full dataset,
with which to compare these “significant” results. The best pic-
ture for this situation is known as a volcano plot, as shown in
Figure 9. ESTs that fit the originally hypothesized interaction
pattern are shown on the left of this graph, while those that do
not fit are to the right, and those showing no difference between
the parental and mutant strains are in the middle. The statisti-
cally significant ESTs are at the top of the graph and the non-
significant ones are at the bottom. Note, first, that there are rel-
atively few ESTs fitting the hypothesized pattern compared to
those that contradict it, just as we would expect from the sub-
set of statistically significant results shown in Table 3. Second,
note that the results form a continuum, so that the boundary of
the “statistically significant” region is completely arbitrary. This
is a reminder that probabilities should not be overinterpreted.
Third, note that there are very many genes with “strong” pat-
terns (i.e., outside the dotted lines) that are not statistically sig-
nificant (i.e., below the dashed line). Indeed, the strongest pat-
terns in both directions are actually not statistically significant
at all. This is because of the variability among the replicate ar-
rays for these genes; and therefore, a larger number of replicate
arrays would probably result in many more statistically signif-
icant patterns. Similarly, there are several genes with relatively
“weak” patterns (i.e., inside the dotted lines) that are statisti-
cally significant (i.e., above the dashed line). This is because
of the lack of variability among the replicate arrays for these
genes, and therefore, we should treat these particular results
with some caution because of the small number of replicates
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FIG. 8. Expression levels for each of the four combinations
of experimental conditions averaged across all 2066 ESTs from
the Matrajt et al. (2002) data set. The lower pair of symbols
represent the tachyzoite culture conditions and the upper pair
the bradyzoite culture conditions. The error bars are the pooled
95% confidence limits as derived from the orthogonal analysis
of variance (Table 2a).

(e.g., if their weak patterns are confirmed by increased repli-
cation then they may not be of much biological interest).

This brings us to a consideration of power analysis for this
type of statistical hypothesis testing. Power analysis is much
better developed for statistical tests than for multivariate anal-
ysis, and so the analysis is relatively straightforward. Let us
consider the two-factor ANOVA that we have just been look-
ing at, where we consider that the tests might not be very pow-
erful (i.e., we are doubtful that many of the tests should be con-
sidered to be significant). Here, we have a single specified
biological pattern that we are testing (i.e., we have a prediction
about what the pattern will be), which in this case is that the
relative microarray expression levels will be 1 (parental para-
site strain under the tachyzoite cultivation conditions): 1 (mu-
tant strain under tachyzoite conditions): 1.5 (mutant strain un-
der bradyzoite conditions): 2 (parental strain under bradyzoite
conditions).

The results of this power analysis are shown in Figure 10,
as the solid line. This graph shows how the power (on the ver-
tical axis) changes with variation in the number of replicates
(on the horizontal axis). Clearly, as expected, our two replicates
are completely inadequate for this analysis, as their power is
very small. To get a decent power size, say 0.8, would require
six replicate experiments. This may sound outrageous, but these
are the facts of the case—if you want to do serious amounts of
testing of individual ESTs, based on relatively small differences
in expression level, then you have to have a serious number of
replicates.

Note that, unlike the first power graph, the results of this
power analysis (and the next ones) apply solely to the experi-
ment conducted here—the estimated number of replicates re-
quired cannot necessarily be used as a guideline for any other
experiments. Furthermore, we have used parametric statistical
tests for the data, and so we have used parametric power analy-
ses. It is often possible to perform the power analyses using
permutations, as well, which would be more appropriate if per-
mutation tests are being used for the formal analyses.

As an aside, before we proceed to the next substantive anal-
ysis, it might be worth pointing out that it is also possible to
statistically test the multivariate pattern shown in Figure 6b.
This pattern was based on estimating the pairwise similarity
among the expression fingerprints, with the pattern displayed
showing the relative similarity among the eight experimental
treatments. If we take the complement of the similarity mea-
sures then they are distances (equivalent to the visual distances
between the points shown on the graph), and these distances
can actually be analyzed using analysis of variance, as discussed
by Anderson (2001) and McArdle and Anderson (2001). This
would be a two-factor orthogonal analysis of variance, with
Strain and Cultivation as the two factors, as we have just dis-
cussed. The only difference is that the F-value produced from
a distance-based analysis is not a true F-value (i.e., its frequency
distribution will not follow the usual F-distribution), and so the
probability must be calculated using permutations.

The results of this distance-based analysis using both the
Gower coefficient and the correlation coefficient are shown in
Table 4, in standard format. Note that both analyses agree that
there is little evidence to reject the null hypothesis for the in-
teraction term (i.e., P . 0.05), in contrast to the results of the
three-factor analysis shown in Table 2a. This is because of the



low power of the two-factor analysis compared to the three-fac-
tor analysis—the information provided by each gene individu-
ally is ignored in the distance-based analysis, which uses only
a summary of the gene information. This point is obvious just
from comparing the degrees of freedom of the analyses shown
in Table 2a and Table 4. The three-factor analysis is thus to be
preferred in this case.

As a final way of analysing the data, Matrajt et al. (2002)
converted their EST expression data into induction/repression
data by calculating the bradyzoite-to-tachyzoite (B/T) ratio for
each EST, thus highlighting constitutively expressed genes.
Furthermore, they formed gene clusters of ESTs, by grouping
together those ESTs known to be associated with a particular
gene. This subset of the data involves only 459 of the ESTs.

This new approach is an important suggestion from the point
of view of experimental design. The inferences drawn about the
gene clusters will be based on the data from replicate ESTs,
which are, in turn, based on data from replicate arrays. This
should produce better-quality data and therefore more reliable
conclusions, even though it involves using less of the data col-
lected. Even better would have been to have replicate mutant

and parental strains—we would then have as good an experi-
ment as could be reasonably expected in this situation.

Under these revised circumstances, the experimental design
has three factors:

1. Strain—this factor forms two groups, one for data that came
from the parental strain and one for data from the mutant
strain;

2. Cluster—this factor forms 83 groups, one for data that came
from each of the genes;

3. EST—this factor forms 459 groups, one for each of the
ESTs.

However, the relationship between these factors is no longer
completely orthogonal. In particular, the EST factor is nested
within the Cluster factor, because each EST must come from
only one gene cluster, and thus cannot interact with it. The ap-
propriate statistical test is still a three-factor analysis of vari-
ance, but it is now a mixed analysis, and there is only one in-
teraction that can be tested (the two-factor one between Strain
and Cluster). The EST factor is still random and the Strain fac-
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TABLE 3. RESULTS OF THE TESTING THE EXPRESSION OF EACH OF THE 2066 ESTS FROM THE MATRAJT ET AL.
(2002) DATA SET INDIVIDUALL Y USING A TWO-FACTOR ORTHOGONAL ANALYSIS OF VARIANCE

EST Interaction Normal Permutation
clone F Pa Pb Patternc

tgzz53g01.r1 32.969 0.00456 0.0060 Alt
tgzz63h04.r1 31.453 0.00497 0.1032 Alt
tgzz64g08.r1 30.764 0.00517 0.0036 Alt
tgzz59c05.r1 30.207 0.00534 0.0010 Alt
tgzz38h01.r1 29.768 0.00549 0.0074 Exp
tgzy48d04.r1 28.211 0.00604 0.0266 Alt
tgzz59d01.r1 27.496 0.00632 0.0238 Alt
tgzy37b05.r1 27.268 0.00642 0.0148 Alt
tgzz59g07.r1 27.113 0.00649 0.0216 Alt
tgzz29a10.r1 26.976 0.00654 0.0610 Alt
tgzy52d07.r1 26.974 0.00655 0.0128 Exp
tgzz61g09.r1 26.471 0.00677 0.0720 Alt
tgzz69e04.r1 26.430 0.00679 0.0590 Exp
tgzz60h10.r1 26.363 0.00682 0.0148 Alt
tgzy68b04.r1 25.953 0.00701 0.0174 Alt
tgzy59c02.r1 25.782 0.00709 0.0892 Alt
tgzz67g12.r1 25.502 0.00723 0.0410 Alt
tgzz46g05.r1 25.377 0.00729 0.1118 Alt
tgzz67h12.r1 24.390 0.00782 0.0226 Alt
tgzz63g06.r1 23.330 0.00846 0.0144 Exp
tgzz42h07.s1 22.636 0.00892 0.0050 Exp
tgzz61e07.r1 22.062 0.00933 0.0184 Alt
tgzy04d12.r1 21.768 0.00955 0.0010 Alt
tgzz56h07.r1 21.465 0.00979 0.0148 Alt

EST Interaction Normal Permutation
clone F Pa Pb Patternc

tgzz67h10.r1 285.768 0.00007 0.0108 Alt
tgzz58g04.r1 102.250 0.00054 0.0132 Alt
tgzz68g05.r1 83.839 0.00079 0.0372 Alt
tgzz64h06.r1 71.863 0.00106 0.0040 Alt
tgzz64e07.r1 68.173 0.00117 0.0128 Alt
tgzz60c05.r1 67.656 0.00119 0.0072 Alt
tgzz68h02.r1 54.972 0.00177 0.0126 Alt
tgzz67h02.r1 53.040 0.00189 0.0350 Alt
tgzy71c07.r1 50.742 0.00205 0.0578 Alt
tgzz63h07.r1 49.784 0.00213 0.0360 Alt
tgzy50d07.r1 47.253 0.00235 0.0126 Alt
tgzz49g05.r1 47.029 0.00237 0.0210 Alt
tgzy67c07.r1 46.497 0.00242 0.0164 Alt
tgzy46e04.r1 41.387 0.00300 0.0046 Alt
tgzz43g03.s1 37.413 0.00362 0.0046 Alt
tgzz64h08.r1 35.718 0.00394 0.0764 Alt
tgzz50g01.r1 35.661 0.00395 0.0076 Alt
tgzz60h04.r1 35.659 0.00395 0.0318 Alt
tgzz60d11.r1 35.569 0.00397 0.0030 Alt
tgzz30a09.r1 34.926 0.00410 0.0072 Alt
tgzz27b02.r1 34.705 0.00415 0.0050 Alt
tgzz53g02.r1 34.604 0.00417 0.0518 Alt
tgzz37c10.r1 33.446 0.00444 0.0200 Exp
tgzz64d12.r1 33.002 0.00455 0.0132 Alt

Only the results of testing  the interaction between parasite strain (parental versus mutant) and cultivation conditions (tachy-
zoite versus bradyzoite) are shown, and only those results for which the normal-theory is P , 0.01.

aThis is the Type I error probability assuming that the data are normally distributed, calculated using the SYSTAT (v. 9.01)
program of SPSS (1998).

bThis is the Type I error probability based on permutation testing, calculated using the NPMANOVA program of Anderson (2001).
cThis represents which of the two alternative patterns the data support if we reject the null hypothesis of no pattern. Exp 5

the parental tachyzoite and bradyzoite conditions have different expression levels but the mutant ones do not; Alt 5 the 
mutant tachyzoite and bradyzoite conditions have different expression levels but the parental ones do not.



tor is fixed, while the Cluster factor is best treated as random
(since the genes chosen are an arbitrary selection of all of the
available possibilities). For the analyses, the ratio data need to
be log2 transformed, for the same reasons as for the expression
ratio data.

Furthermore, we need to assess whether the assumptions of
the proposed analysis are met by the data at hand (we should
have done so for the previous ANOVA as well, of course, but
we decided to defer discussion of the topic until this analysis).
The two most important assumptions for analysis of variance
are normality and equal variances. Both of these assumptions
can be tested using the results of the ANOVA itself, in partic-
ular, the residuals from that analysis, which are just the differ-
ence between the observed value of each observation and the
value predicted by the analysis. Normality is assessed using a
normal probability plot, which is a scatterplot showing the re-
lationship between the residuals (horizontally) and what would
be expected if they did come from a normal distribution (ver-
tically). The points on this plot should form a straight line. They
do for our analysis, and so we may assume that our data are
normally distributed. Variance homogeneity can be assessed us-
ing a residual plot, which is a scatterplot showing the relation-
ship between the predicted observations (horizontally) and the
residuals (vertically). The points on this plot should not show
any regular patterns, including curvilinear trends, systematic
trends of vertical spread (e.g., increasing residual values with
increasing predicted values), or nonsymmetric vertical distri-
bution. For our analysis the points are randomly scattered, and
so we can assume that the data have homogeneous variances.

The results of the appropriate analysis of variance are shown
in Table 2b, in standard format. This analysis indicates that we
should accept the null hypothesis (i.e., P . 0.05) for the EST
factor (i.e., there is no significant difference between the in-
duction levels of the ESTs within each gene cluster), but that
we should reject each of the other three hypothesis tests (i.e.,
P , 0.05). The result for the EST factor is to be expected if the
ESTs have been correctly assigned to their genes, since all of
the ESTs in any particular gene cluster should either be ex-
pressed together or not expressed at all—the large probability
indicates that this is so. However, we are actually most inter-
ested in the Strain*Cluster interaction, because this tells us that
some genes are significantly induced or repressed in either the
parental or mutant strain (but not in the other).

Once again, to investigate this pattern in more detail we have
a number of options open to us, with the same potential prob-
lems as before. For illustrative purposes, we performed two
analyses. First, we simply calculated the 95% confidence in-
tervals for each gene for each parasite strain. If these intervals
do not overlap between the two strains for a particular gene,
then we can declare the induction/repression levels for the two
strains to be significantly different from each other. Further-
more, if the 95% confidence interval for a particular gene does
not overlap zero (on our log2-transformed scale), then we can
declare that it is significantly induced or repressed for that par-
asite strain. This provides an explicit statistical criterion for in-
duction, as opposed to merely choosing an arbitrary level such
as two-fold. Note that we can base the calculation of the con-
fidence intervals on the results from the ANOVA because the
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FIG. 9. Volcano plot of the results from the testing of the expression of each of the 2066 ESTs from the Matrajt et al. (2002)
data set individually using a two-factor orthogonal analysis of variance. Only the results of testing the interaction between par-
asite strain (parental versus mutant) and cultivation conditions (tachyzoite versus bradyzoite) are shown. Each symbol in the scat-
terplot represents one of the ESTs, with the horizontal axis representing the magnitude of the biological pattern and the vertical
axis representing the magnitude of the statistical pattern. The statistical pattern is measured as the 2log10 probability (based on
the standard normal-theory assumption), so that increasing values indicate increasing statistical significance; values above the
dashed line therefore have P , 0.01. The biological pattern is measured as the relative difference in response to the cultivation
conditions between the parental and mutant strains, so that negative values indicate that the parental tachyzoite and bradyzoite
conditions have different expression levels but the mutant ones do not (the predicted pattern), while positive values indicate that
the mutant tachyzoite and bradyzoite conditions have different expression levels but the parental ones do not. Values outside the
dotted lines have a twofold difference in behavior between the parental and mutant strains.



assumptions of the analysis have been met—consequently, we
can create pooled confidence intervals rather than creating sep-
arate confidence intervals for each gene, and this should pro-
vide more statistical power.

Second, we performed a one-factor ANOVA for each gene
cluster, comparing the two parasite strains (this is the analo-
gous procedure to what we did above), and we then used the
false discovery rate to correct the probabilities to deal with the
multiple-testing problem (setting the rate to 5%). Note that we
do a one-factor ANOVA here rather than a two-factor nested
ANOVA because the EST factor was not statistically signifi-
cant in the main analysis, so that we can pool the replicate ex-
periments and the “replicate” ESTs for each gene cluster, giv-
ing a more powerful statistical test.

A summary of the results of these analyses is shown in Table
5. Only 20 of the gene clusters are shown, leaving out those for
which we have concluded there is no significant induction or
repression. First, the boldface values .1 indicate those gene
clusters with significant induction in that parasite strain, while
boldface values ,1 indicate those gene clusters with signifi-
cant repression in that parasite strain. Note that most of the de-
tected patterns refer to repression rather than to induction. Ap-
parently, induction is much harder to detect in this dataset.
Second, the corrected probabilities from the ANOVA detected
only one significant difference between the parasite strains,
while the 95% confidence intervals detected two differences.
As is becoming a familiar theme, there seems to be very little
power in these statistical tests.

The results of the simple power analyses for these two analy-
ses are shown in Figure 10. However, in this case we are not
examining the number of experimental replicates needed, but
are instead looking at how many “replicate” ESTs are needed
for each gene cluster. The power line for detecting significant
induction/repression (the dashed line) is fortuitously nearly the
same as that for the previous analysis, indicating that we really
should have six replicate ESTs to have a decent chance to de-
tect induced genes. The power line for detecting a significant
difference between the two parasite strains (the dotted line) is
much lower, as would be expected from the results of the sta-
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FIG. 10. Power analysis plots of the multifactorial analyses
of variance for all sample sizes from 2–20 replicates from the
Matrajt et al. (2002) data set. The power is the probability of
correctly accepting a true null hypothesis. Alpha is the proba-
bility of falsely rejecting a true null hypothesis, and was set at
P 5 0.05. The solid line is from the two-factor analysis of ex-
pression for each EST, with the effect size for the magnitude
of the pattern in the dataset specified as group mean expression
levels of 1, 1, 1.5, and 2 for the four combinations of experi-
mental conditions, along with the within-group variance calcu-
lated from the three-factor orthogonal analysis of variance
(Table 2a). This estimates the number of experimental repli-
cated required per EST. The dotted line is from the one-factor
analysis of induction for each EST cluster, detecting a differ-
ence between the parental and mutant strains, based on the
within-group variance calculated from the three-factor mixed
analysis of variance (Table 2b). The dashed line is from the
same analysis, detecting a significant induction or repression
level (i.e., B/T Þ 1). Calculated using the DESIGN (v. 3.0) pro-
gram of Dallal (1988). These latter two lines estimate the num-
ber of replicate ESTs required per gene cluster.

TABLE 4. RESULTS OF THE DISTANCE-BASED ANALYSES OF VARIANCE OF THE EXPRESSION

DATA FROM THE 2066 ESTS FROM THE MATRAJT ET AL. (2002) DATA SET

Analysis of variancea

Source of Degrees pseudo-
variation of freedom Mean-square F-value P

(a) Gower coefficient
Strain 1 0.0908 1.861 0.1563
Cultivation 1 0.2029 4.157 0.0162
Strain*Cultivation 1 0.0797 1.633 0.2010
Residual 4 0.0488

(b) Correlation coefficient
Strain 1 0.0160 3.846 0.0363
Cultivation 1 0.0174 4.193 0.0280
Strain*Cultivation 1 0.0106 2.558 0.0995
Residual 4 0.6549

aTwo-factor orthogonal analysis, with Strain and Cultivation as fixed factors. Calculated using the DISTLM (v. 2) program of
McArdle and Anderson (2001), based on 50,000 permutations and the Monte Carlo P-value.



tistical tests (i.e., we found 20 gene clusters with significant in-
duction/repression but only one to two gene clusters with a sig-
nificant difference between the strains). In this case, we would
need nine replicate ESTs to have a respectable chance of de-
tecting real differences between the two parasite strains. The
average number of ESTs per gene in the experiment is 5.5, in-
dicating why most of the gene cluster tests have relatively low
power.

Second dataset

Singh et al. (2002) also describe a study involving the anal-
ysis of changes in gene expression during stage conversion of

T. gondii tachyzoites into bradyzoites in vitro. As part of their
experimental plan they performed a microarray experiment to
examine expression on approximately 4000 ESTs. They used a
direct design, in which each of the experimental samples was
compared directly to a sample from the wild-type strain on each
array slide. The processed data from this experiment are avail-
able at www.stanford.edu/,blader/Usinghetalwebfig1.xls, with
the original array data in the Stanford Microarray Database
(http://genome5-www.stanford.edu).

We can start the discussion here by thinking about the ex-
perimental design itself, as before. In contrast to the previous
experiment, this experiment involved an unreplicated direct de-
sign, as shown in Figure 3c. In this case, each array involved
a comparison between a cDNA sample from one of the mutants
and from the parental strain, which is the comparison of direct
interest in the experiment. Note, however, that using this de-
sign we do not end up with any data concerning expression lev-
els in the parental strain, but only comparisons of the mutants
to the parents.

As far as data analysis is concerned, the dataset here is con-
ceptually the same as that used for the final analysis discussed
in the previous section (i.e., the analysis of induction). That is,
we have ratio data for a collection of ESTs within a set of gene
clusters. Last time, the observations represented the bradyzoite-
to-tachyzoite ratio for both a mutant and a wild-type strain; this
time the observations represent the mutant-to-wild-type ratio
for bradyzoites of four different mutant strains. However, this
is a difference in the biological interpretationof what the num-
bers mean, it does not represent any mathematical difference in
how the data should be treated mathematically. So, in fact, we
are faced with a rather similar data analysis situation here. Nev-
ertheless, it will turn out that the analyses need to be quite dif-
ferent, due to the consequences of some significant differences
in the experimental design.

Before we begin, there is one general point that can be made.
In the discussion of the previous experiment it was pointed out
that a better experimental design would be to have replicate mu-
tant and parental strains, as well as replicate experiments. So,
it is worthwhile to note that in this experiment we have repli-
cate mutant strains but not replicate parental strains or replicate
arrays.

We begin the analysis by proceeding in a similar fashion to
what we did before. First, we selected only that subset of the
data for which there were two replicate ESTs from the same
gene cluster for each of the four mutant parasite strains. This
turns out to be an important consideration here, because the ar-
rays used for mutants TBD-1 and TBD-2 seem to be quite dif-
ferent from those used for mutants TBD-3 and TBD-4. In par-
ticular, the ESTs recorded for each of these two groups of
mutants are rarely the same in the dataset. Consequently, the
data can be expected to have quite different properties from the
previous dataset, where the same ESTs were recorded for both
strains.

This point has several consequences for the data analysis.
First, we could not impute missing values in this dataset even
if we wanted to, because the values are very much missing not
at random. Which ESTs are missing is determined mostly by
which array is being studied. Second, we must therefore treat
each EST as a replicate estimate of induction for each gene
cluster, independently of each other EST. The ESTs are thus

MORRISON AND ELLIS384

TABLE 5. TRANSCRIPTS THAT WERE SIGNIFICANT LY

INDUCED OR REPRESSED IN EITHER THE PARENTAL OR

MUTANT STRAINS, BASED ON THEIR BRADYZOITE /
TACHYZOITE (B/T) RATIO, AS DETERMINED BY A THREE-
FACTOR MIXED-MODEL ANALYSIS OF VARIANCE OF THE

459 ESTS FROM THE MATRAJT ET AL. (2002) DATA SET

Cluster Parental Mutant
IDa B/T b B/T b

Induced in parent
4054 1.70 0.89
4184 1.72 1.09
4303 2.26 1.64

Induced in mutant
4276 1.53 2.03

Repressed in parent
502 0.60 0.89
1016 0.58 0.88
4059 0.55 1.16
2900 0.54 0.68
3613 0.50 0.71
4152 0.41 0.80
4307 0.39 0.84

Repressed in mutant
4287 0.98 0.56
1776 0.88 0.54
481 1.01 0.54
1101 0.80 0.50
3626 1.24 0.47c

4093 1.16 0.46d

1577 0.80 0.46
Repressed in parent and mutant

2496 0.47 0.40
4396 0.57 0.59

aRefers to the “Toxoqual3” clusters describing overlapping
EST clones in the Parasite Databases of Clustered Sequences.

bBold values indicate that the induction or repression is sta-
tistically significant (i.e., B/T Þ 1) based on the 95% confi-
dence intervals as derived from the mixed-model analysis of
variance of all 83 clusters.

cThe parental and mutant levels of induction are statistically
different based on their 95% confidence intervals as derived
from the mixed-model analysis of variance of all 83 clusters.

dThe parental and mutant levels of induction are statistically
different based on their 95% confidence intervals as derived
from the mixed-model analysis of variance of all 83 clusters,
as well as based on a one-factor analysis of variance with the
probability corrected for the false discovery rate of all 83
clusters.

http://www.stanford.edu/%7Eblader/Usinghetalwebfig1.xls
http://genome5-www.stanford.edu


best treated as a random sample of the estimated induction level
for each gene cluster for each mutant strain. This is not an ideal
situation, because all of the “replicates” come from a single ar-
ray, but this seems to be the only acceptable approach to the
data analysis. For the analysis, we therefore have observations
for 202 gene clusters for each of the four mutant strains, spread
across 4200 EST measurements (i.e., an average of ,5 repli-
cate ESTs per gene cluster for each mutant).

Under these circumstances, the experimental design has two
factors:

1. Strain—this factor forms four groups, one for data that came
from each of the mutant strains;

2. Cluster—this factor forms 202 groups, one for data that came
from each of the genes.

Note that we do not have replicate experiments in this case,
and so we do not have any replication of induction estimates
within ESTs. Consequently, “EST” does not appear as a sepa-
rate factor in the analysis, as it did last time (see Table 2b). The
appropriate statistical analysis here is a two-factor orthogonal
analysis of variance, with one interaction that can be tested (the
two-factor one between Strain and Cluster). As before, the
Strain factor is fixed, while the Cluster factor is best treated as
random (since the genes chosen are an arbitrary selection of all
of the available possibilities); and the ratio data need to be log2

transformed, so that a transformed ratio of zero means no in-
duction or repression.

The results of the appropriate analysis of variance are shown
in Table 6, in standard format. This analysis indicates that we
should reject the null hypothesis only for the Cluster factor (i.e.,
P , 0.05). We are actually most interested in the Strain*Clus-
ter interaction. In this case, the analysis tells us that there is no
evidence of differences in induction or repression among the
mutant strains for different genes—that is, each gene behaves
the same across all four of the mutants.

However, as before, we need to assess whether the assump-
tions of this analysis are met by the data. This time, the points
of the normal probability plot do not form a straight line; in-
stead, they form a definite sigmoid shape. We must thus con-
clude that our data are not normally distributed. In the residual
plot the points are randomly scattered, and so we can assume
that the data have homogeneous variances. Nevertheless, the
results of the ANOVA cannot be trusted, due to the non-nor-
mality.

We should therefore try a nonparametric analysis instead, to
evaluate whether the ANOVA is leading us to a wrong conclu-
sion. We could, for example, use permutation testing to produce
the probabilities. This was not necessary for the analysis shown
in Table 2b, since the ANOVA assumptions were met. How-
ever, just for the exercise we actually did perform that analysis
using permutation tests, and in that case we got probabilities that
were the same as those shown in Table 2b to three decimal places
(using only 2000 permutations). This is what would be expected
when the assumptions are met. However, this is not what we
would expect for the analysis shown in Table 6.

Unfortunately, permutation testing cannot be done for this
dataset, just as it couldn’t for the analysis in Table 2a. There
are some practical restrictions on the use of permutation tests
for multifactorial analysis of variance, compared to the usual
parametric method. For example, most of the computer pro-
grams available assume that: (1) there are only two factors,
and/or (2) there are relatively few levels per factor, and/or (3)
it is a balanced experimental design (i.e., there are equal num-
bers of replicates in all of the levels), and/or (4) there are rel-
atively few total observations. Microarray data do not meet
these constraints when there are thousands of genes (and it was
difficult enough to do the permutation testing of Table 2b,
which is a much smaller dataset).

So, instead we can try a Kruskal-Wallis test, which analyzes
the ranks of the observations as opposed to their original val-
ues. This is thus a nonparametric test rather than a parametric
one. Parametric tests are generally to be preferred because they
will be more powerful, as they use the full information in the
data rather than merely the rank-order. However, they are only
powerful if the data meet their assumptions, and they can be
quite sensitive to departures from those assumptions. Since the
assumptions are doubtfully met in this case, we need to assess
whether the departure from the assumptions is important here.

The results of the appropriate Kruskal-Wallis analysis are
also shown in Table 6. The probabilities from this analysis are
quite different to those from the ANOVA, but they still lead us
to the same conclusions for each of the three hypothesis tests.
This is thus confirmation of the ANOVA results, and we should
perhaps trust them after all. We can thus safely conclude that
there is no evidence that any of the genes behaves differently
among the four mutants. The genes do, however, behave quite
differently from each other. Therefore, if a gene is induced then
it is induced in all four mutant strains, and if it is repressed then
it is repressed in all four mutants.
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TABLE 6. RESULTS OF THE ANALYSES OF VARIANCE AND KRUSKAL-WALLIS TEST OF THE INDUCTION /REPRESSION

DATA FROM THE 4200 ESTS IN 202 GENE CLUSTERS FROM THE SINGH ET AL. (2002) DATA SET

Source of Degrees
variation of freedom Mean-square F-value P H-value P

Strain 3 0.7173 1.205 0.3498 2.855 ,0.5855
Cluster 201 14.8447 22.668 ,0.0001 1931.746 ,0.0001
Strain*Cluster 603 0.5953 0.909 0.9325 337.999 .0.9999
Residual 3392 0.6549

aTwo-factor orthogonal analysis, with Strain as a fixed factor and Cluster as a random factor. Calculated using the SYSTAT
(v. 9.01) program of SPSS (1998), based on the expected mean-squares suggested by Zar (1999).

bTwo-factor orthogonal analysis. Calculated using the SYSTAT (v. 9.01) program of SPSS (1998), based on the calculations
indicated by Zar (1999).

Analysis of variancea Kruskal-Wallis testb



As another aside, we could consider the possibility of deal-
ing with the unlikeliness of the ANOVA assumptions by using
alternative estimation procedures for this factorial experimen-
tal design, such as weighted least-squares (e.g., Kerr et al.,
2002), maximum likelihood (Chu et al., 2002) or even empir-
ical Bayesian analysis (Lönnstedt et al., 2001). However, we
decided to keep things simple and compare the ordinary least-
squares method to a rank-order equivalent.

These ANOVA results are interesting, but they do not tell
us everything that we want to know. The ANOVA compares
the average induction/repression levels between groups of genes
and groups of mutants, but it does not tell us which genes are
induced or repressed. To find this out, we can proceed as we
did last time, by calculating the confidence intervals for each
gene for each parasite strain. If this interval does not overlap
zero for a particular gene then we can declare that it is signif-
icantly induced or repressed in that parasite strain. Note that we
cannot base the calculation of the confidence intervals on the
results from the ANOVA (as we did before) because the as-
sumptions of the ANOVA analysis are not met. Consequently,
we cannot create pooled confidence intervals but must instead
create separate confidence intervals for each gene. This means
that the statistical power may vary dramatically between the
various confidence intervals, whereas last time it was a con-
stant powerful test. In particular, any ESTs that have small con-
fidence intervals by chance (e.g., as a result of having only two
replicates) will appear to be spuriously “significant.” This is a
common problem in microarray studies, which is why the
pooled estimates from the ANOVA are to be preferred.

Alternatively, assessing whether a confidence interval over-
laps zero or not is conceptually the same as performing a one-
sample t-test to test the null hypothesis that the mean induction
is zero, and this would actually be the standard statistical ap-
proach to this problem. If we use this approach instead, then it
allows us to try to deal explicitly with the multiple-testing prob-
lem, since we are calculating actual probabilities. This is an im-
portant point here, because we are doing 202 genes 3 4
strains 5 808 tests, rather than the 166 tests that we did before.
So, for the analysis we used the false discovery rate to correct
the probabilities (again setting the rate to 5%). To make this
testing procedure a bit more comparable to the approach using
confidence intervals, we calculated 99% confidence intervals
rather than 95% ones.

However, we still have the problem of demonstrated non-
normality in the dataset, and both of these procedures are also
based on the assumption of normality. It will thus be best to
have some confirmatory evidence from other analyses; and for
comparison, we should therefore also perform these two pro-
cedures using nonparametric methods. The permutation equiv-
alent of the one-sample t-test is the Fisher randomization test,
and the bootstrap-t procedure can be used to create 99% con-
fidence intervals. The limitation of both of these procedures is
that they are only effective for samples with at least seven ob-
servations. This means that they could only be performed for
167 of the 808 samples. We must then conclude that no statis-
tical evidence can be provided for the other samples. Further-
more, the normal confidence intervals use fixed levels for de-
tecting both induction and repression (i.e., the intervals are
symmetrical about the mean, so that the same cutoff is used for
both induction and repression), whereas the bootstrap-t inter-

vals are not necessarily symmetrical. Whether this difference is
a good or bad thing is a moot point.

Before proceeding to the comparison of the results of these
four analyses, it may be interesting to show what happens when
we adjust probabilities to deal with the multiple-testing prob-
lem, which is one of the biggest problems in the analysis of mi-
croarray data. The results of the 808 one-sample t-tests are
shown in Figure 11, where they are compared to four different
criteria for assessing statistical significance.

The dotted line represents P 5 0.05, which is the conven-
tional statistical criterion unadjusted for multiple hypothesis
tests. Using this criterion, we would reject the null hypothesis
(that the mean induction is zero) for 182 of the 808 tests, which
is clearly rather liberal. We would be expecting 808 3 0.05 5

40.4 Type I errors (false discoveries) in the complete set of
tests. The two solid lines represent corrections for multiple hy-
potheses so that the familywise error rate for the collection of
808 hypothesis tests is maintained at P 5 0.05. The lower line
is the Bonferroni correction, which is the most conservative
possibility, while the upper line is the sequential Bonferroni
(i.e., Holm/Hochberg) correction, which is more powerful. In
this case, both procedures produce the same result, with 27 of
the null hypotheses being rejected. Under these circumstances
we would be 95% confident that none of these rejections are
Type I errors. Finally, the dashed line represents correction for
multiple hypotheses based on a false discovery rate of P 5 0.05,
thus allowing 5% of the hypothesis rejections to be Type I er-
rors (false discoveries). Using this procedure, we would reject
86 of the 808 null hypotheses, with the expectation that 86 3
0.05 5 4.3 of these rejections are Type I errors. This is thus a
more powerful criterion than the use of the Bonferroni proba-
bilities, because we have rejected 59 more hypotheses in ex-
change for only ,5 mistakes. This is quite a good swap, in this
case, and it is thus probably the preferred solution.

There will usually be little to choose between the sequential
Bonferroni and the false discovery procedures for small num-
bers of hypotheses, but in situations such as the one discussed
here the difference can be quite remarkable. Note, also, that our
use of a 99% confidence interval produces results that are quite
similar to the use of the false discovery rate for this example,
as it indicates that 107 of the samples have induction/repres-
sion levels that differ from zero (on the log2-transformed scale).

A summary of the results of our four analyses of the induc-
tion/repression data are shown in Table 7. Only 52 of the gene
clusters are shown, leaving out those for which we have con-
cluded that there is no significant induction or repression based
on any of the four tests. The different letters in the table rep-
resent those genes and strains for which each of the four tests
detected significant induction/repression. Several points can be
noted. First, the “bcde” results are those that are confirmed by
all four tests, and are therefore clearly the most reliable results.
This comprises 47% of the tests shown, as well as all of the
tests that have not been shown, suggesting that this has been
quite a successful experiment. Second, the most liberal of the
tests is the normal 99% confidence interval, as almost all of the
other results are a subset of these results. Third, the “bc” re-
sults are those detected by the parametric tests but not by the
non-parametric ones. This is the second-largest group of results,
because of those tests where the sample size was insufficient
to perform the nonparametric tests. These test results are not
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reliable, because of the small sample size and the known non-
normality of the data, and they need confirmation before they
can be accepted. Fourth, there are two “de” results, which are
those detected by the nonparametric tests but not by the para-
metric ones. These two samples presumably violate the para-
metric assumptions so much that the parametric tests fail. This
emphasizes the value of nonparametric tests in the analysis of
microarray data.

Finally, note that the results here contradict those of the main
two-factor ANOVA, because the genes are clearly shown as
having different behaviour among the mutant strains (i.e., few
of the genes show significant induction or repression across all
four mutants). This outcome is mostly because of the unequal
sample sizes among the groups. Many of the strains have small
numbers of ESTs recorded for a particular gene while the other
strains have larger numbers of ESTs recorded for the same gene,
and this affects the power of the statistical tests. This situation
is having a strong effect on the individual analyses but does not
affect the ANOVA as strongly (i.e., the two-factor ANOVA is
more robust than are the individual tests). This is why the main
ANOVA should be used prior to performing the individual tests,
as it will help avoid spurious conclusions that can arise from
looking at the details before looking at the overall picture.

Performing a power analysis in this situation is a bit prob-
lematical, but we can have a go at it. The problem is that power
analysis is only a well-developed discipline where the assump-
tion of normality holds, which is not the case here. However,
given the congruence of the ANOVA and Kruskal-Wallis tests,
along with the congruence of most of the individual paramet-
ric and nonparametric tests, a parametric power analysis will
probably not be misleading, although it is likely to overestimate

the power (see Black and Doerge, 2002). We can base such an
analysis on the averaged results of the individual tests, and look
at how many “replicate” ESTs are needed for each gene clus-
ter to detect significant induction/repression.

The results of this power analysis are shown in Figure 12,
based on several different scenarios. The three solid lines rep-
resent the situation for detecting a two-fold induction or re-
pression, while the three dashed lines represent the situation for
detecting a 1.5-fold induction or repression. As expected, we
need more replicate ESTs for detecting the smaller pattern.
Within each of these two line types, the three lines represent
different significance levels, with increasing statistical strin-
gency from left to right. The increased stringency helps us to
understand what happens when dealing with the multiple-test-
ing problem—we need to set a more stringent criterion when
we have lots of tests to perform. For example, our use of the
99% confidence intervals was too liberal, and we were thus
dealing with a situation somewhere between the P 5 0.01 and
P 5 0.001 lines on the graph. In this case, we would need about
eight replicate ESTs to have a respectable chance of detecting
a real two-fold induction or repression, and about 15 replicate
ESTs for detecting a real 1.5-fold induction or repression. Only
16% of the samples meet the former criterion and only 6% meet
the latter, indicating that most of the gene cluster tests proba-
bly have relatively low power in this experiment.

Alternatively, we can perform a nonparametric power anal-
ysis by choosing some of the samples as examples, and we can
then compare these to a parametric power analysis of those same
samples. This will help us to understand the circumstances un-
der which the main parametric power analysis might be mis-
leading. We have chosen three samples each with 10 replicate
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FIG. 11. Rank-order probability plot of the results of the one-sample t-tests from the Singh et al. (2002) data set. The symbols
represent the 808 probabilities in increasing rank order, calculated using the SYSTAT (v. 9.01) program of SPSS (1998). The
lines show the boundary of the critical region based on four different criteria for statistical significance, so that the null hypoth-
esis of no induction/repression would be rejected for any of the symbols lying below the respective line (and accepted for those
lying above the line). The dotted line represents the 95% confidence interval (i.e., P 5 0.05), which is the conventional statisti-
cal criterion unadjusted for multiple hypothesis tests. The two solid lines represent corrections for multiple hypotheses so that
the setwise (or familywise) error rate for the collection of 808 hypothesis tests is maintained at P 5 0.05; the lower line is the
Bonferroni correction, which is the most conservative possibility, while the upper line is the Holm/Hochberg correction, which
is more powerful. The dashed line represents correction for multiple hypotheses based on a false discovery rate of P 5 0.05, thus
allowing 5% of the hypothesis rejections to be Type I errors (or false discoveries).



TABLE 7. TRANSCRIPTS THAT WERE SIGNIFICANTL Y INDUCED OR REPRESSED IN ANY OF THE FOUR MUTANT STRAINS, 
BASED ON THEIR BRADYZOITE RATIO TO THE WILD TYPE, AS DETERMINED BY

VARIOUS TESTS OF THE 202 GENE CLUSTERS FROM THE SINGH ET AL. (2002) DATA SET

Cluster IDa TBD-1 TBD-2 TBD-3 TBD-4

Induced
20 bc bc
449 bcde bcde
546 bc
604 bcde bcde bcde bcde
619 bcde bcde bcde bcde
622 bc
830 bcde bcde
854 b
1101 bcde bcde
1406 bcde bcde bcde bcde
1589 bc bc
1776 bc
1854 bcde
1886 b
2199 bc bc bc b
2303 bc
2376 bcde bc
2486 bcde bcde
3429 bc
3622 bcde bcde
3735 bc
3949 b
4091 bc
4240 bcde bcde bcde bcde
4253 bcde bcde
4294 bc
4365 bc
4387 b b
4395 bc
Repressed
101 bcde bcde
750 bcde bcde
1577 b
2161 bc bc b
2329 bc
3906 bcde bcde bcde bcde
3919 bcde bcde bcde bcde
3985 bc bc
3993 bc
4018 bc
4034 bcde
4054 bcde bcde bcde bcde
4130 bcde bcde bcde bcde
4131 bcde bcde bcde bcde
4135 bc bcde bc
4144 bc
4192 b bc b
4196 bcde bcde bcde
4219 bcde
4243 b b bcde bcde
4303 bcde bcde
4432 bcde bcde bcde bcde
4436 bcde bcde

aRefers to the “Toxoqual3” clusters describing overlapping EST clones in the Parasite Databases of Clustered Sequences.
bInduction or repression is statistically significant based on the individual 99% confidence interval. Calculated using the SY-

STAT (v. 9.01) program of SPSS (1998).
cInduction or repression is statistically significant based on the individual one-sample t-test, adjusted for a false discovery rate

of 5% among the 808 tests. Calculated using the SYSTAT (v. 9.01) program of SPSS (1998).
dInduction or repression is statistically significant based on the individual bootstrapped-t 99% confidence interval using 10,000

resamples. Calculated using the Resampling Procedures (v. 1.3) program of Howell (2002).
eInduction or repression is statistically significant based on the individual Fisher randomization test using complete enumera-

tion, adjusted for a false discovery rate of 5% among the 167 tests. Calculated using the RT (v. 2.1) program of Manly (1997).



observations, which seem to represent the extremes of the sam-
ples in the experiment. For each sample we performed a para-
metric power analysis, using the assumption of a normal fre-
quency distribution for the samples (i.e., an exact method based
on the one-sample t-test), as well as a nonparametric power
analysis using all possible permutations (i.e., an exact method

based on the Fisher randomization test). The results of the six
power analyses are shown in Figure 13, with the parametric
analyses as solid lines and the nonparametric analyses as dashed
lines.

One of the samples (shown to the far left on the graph) has
a normal distribution, and the parametric and nonparametric
analyses are in close agreement about the power of the data to
detect induction. This sample is an “average” (i.e., typical) one
for the dataset, with an average standard deviation (the mea-
sure of variability in the power analysis), and so it represents
the estimated overall parametric power analysis for the dataset.

The other two samples are both non-normal, as determined
by a Kolmogorov-Smirnov test. The non-normal sample on the
left of the graph has a single outlying observation, which cre-
ates a slightly larger standard deviation, and hence, lower power
compared to the normally distributed sample. The non-normal
sample on the right of the graph has several divergent obser-
vations (creating a platykurtic distribution), which results in a
very large standard deviation, and therefore, much lower power
compared to the other two samples. Furthermore, in both of
these cases the parametric and nonparametric analyses disagree
about the power, due to the fact that the assumptions of the
parametric power analysis are being violated. The nonpara-
metric analysis indicates lower power for both of these samples
compared to the parametric analysis, and this is likely to be a
more realistic assessment of the true situation.

Clearly, the parametric power analysis might be quite mis-
leading for some samples in this type of experiment. If 10 repli-
cates are used, then any samples like the first one will have
quite high power, and any samples like the second one will be
not too bad either. However, samples like the third one do ex-
ist (since there was at least one in this dataset), although they
are rare, and any induction shown by this type of gene will
probably not be detected in an experiment with only 10 repli-
cates.
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FIG. 12. Power analysis plots of the one-sample tests for all
sample sizes from 2–20 ESTs within each cluster from the Singh
et al. (2002) data set. The power is the probability of correctly
accepting a true null hypothesis. Alpha is the probability of
falsely rejecting a true null hypothesis, and three different prob-
abilities are shown for each of the two scenarios. The solid lines
are for the effect size (the magnitude of the pattern in the
dataset) specified as a twofold induction or repression level,
while the dashed lines are for a 1.5-fold induction/repression.
Calculated using the DSTPLAN (v. 4.2) program of Brown et
al. (2000).

FIG. 13. Power analysis plots of the one-sample tests for three of the EST samples from the Singh et al. (2002) data set. The
power is the probability of correctly accepting a true null hypothesis. Alpha is the probability of falsely rejecting a true null hy-
pothesis, and was set at P 5 0.01. The three samples chosen for the analysis fix the estimates of variability and sample size (cho-
sen as n 5 10), and the biological effect size was varied for each analysis. The solid lines are from the parametric analysis, cal-
culated using the DSTPLAN (v. 4.2) program of Brown et al. (2000). The dashed lines are from the nonparametric analysis,
calculated using the RT (v. 2.1) program of Manly (1997). The sample shown to the far left has a normal distribution, while the
other two samples are non-normal.



We will finish on this note about having a decent experi-
mental sample size. Where there is replication of the experi-
mental units and replication of the ESTs then we have high-
quality data. This is probably one of the biggest current
problems with most microarray experiments, that they have in-
sufficient statistical power (due to small sample sizes) to detect
the biological patterns that the experimenters are looking for.
This issue needs to be seriously addressed.
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