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Exploratory data analysis (EDA) involving both graphical displays and numerical
summaries of data, is intended to evaluate the characteristics of the data as well as
providing a form of data mining. For multivariate data, the best-known visual sum-
maries include discriminant analysis, ordination, and clustering, particularly met-
ric ordinations such as principal components analysis. However, these techniques
have limiting mathematical assumptions that are not always realistic. Recently, net-
work techniques have been developed in the biological field of phylogenetics that
address some of these limitations. They are now widely used in biology under the
name phylogenetic networks, but they are actually of general applicability to any
multivariate dataset. Phylogenetic networks are fast and relatively easy to calcu-
late, which makes them ideal as a tool for EDA. This review provides an overview
of the field, with particular reference to the use of what are called splits graphs.
There are several types of splits graph, which summarize the multivariate data in
different ways. Example analyses are presented based on the neighbor-net graph,
which seems to be the most generally useful of the available algorithms. This should
encourage the more widespread use of these networks whenever a summary of a
multivariate dataset is required. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Data mining is the analysis step of knowledge dis-
covery, and the oldest form of data mining is

known as exploratory data analysis (EDA). EDA has
traditionally been used to evaluate the characteris-
tics of a dataset, using graphical displays as well as
numerical summaries. Originally, it involved mainly
statistical techniques (e.g., counting, cross-tabulation,
regression), but was later developed to include neigh-
borhood methods (e.g., nearest-neighbor algorithms,
ordination) and clustering (e.g., hierarchical clus-
tering, k-means clustering). Data mining has now
expanded beyond these classical techniques, of course,
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to include next-generation techniques such as decision
trees, artificial neural networks, and rule induction.
Nevertheless, there is ongoing development in the clas-
sical area as well, as discussed in this overview.

For multivariate data, in which many charac-
teristics (or descriptors) have been measured for each
sample object (i.e., there are no missing data), the EDA
summaries usually apply to the relationships between
the objects. This is sometimes called Q-mode analysis;
the alternative R-mode analysis looks at relationships
among the descriptors. Here, I am restricting myself to
Q-mode analysis, in which the complex relationships
(potentially one or each characteristic) are reduced to
some manageable subset of the most important ones
(variously defined). The best-known visual summaries
of multivariate relationships, as used in EDA, include
both ordination and clustering.

Ordination embraces methods such as fac-
tor analysis, principal components analysis,
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FIGURE 1 | A phylogenetic network of the genetic relationships (measured using microsatellite data) among 255 populations of humans and
chimpanzees. The edges leading to the leaf nodes (which are unlabeled) are color-coded by their source. The network was constructed using the
neighbor-net algorithm, with the similarity measured as the proportion of shared alleles. (The data are available from Ref 1.)

correspondence analysis, and nonmetric multidimen-
sional scaling, while clustering comprises a multitude
of hierarchical algorithms (both agglomerative and
divisive), as well as nonhierarchical techniques such
as k-means clustering and fuzzy clustering. Here,
I provide an introduction to a new class of visual
multivariate summaries called phylogenetic networks,
which in some ways owes a debt to both clustering
and ordination. An example is shown in Figure 1 (it
is discussed further below).

Algorithmically, phylogenetic networks are a
type of agglomerative hierarchical clustering, but in
terms of their objective they have much in com-
mon with fuzzy clustering, in the sense that each
object can simultaneously be a member of one to
many clusters. These networks can be used for var-
ious of the common purposes of data mining, but
most notably: (1) the automatic extraction of pre-
viously unknown patterns with regard to groups of
objects, without using known structures in the data;
(2) the detection of anomalous objects in the dataset;
and (3) providing a compact representation of the
dataset, which can be easily visualized as a connected
graph.

CLUSTERS AND NETWORKS

Phylogenetic networks are so named because they
were originally developed in the biological field of
phylogenetics, starting in the early 1990s. They are
now widely used in biology, but they are of general
applicability to any multivariate dataset. Phylogenetic
networks are fast and relatively easy to determine,
which makes them ideal as a tool for EDA.2

Phylogenetic techniques, including phylogenetic
trees and networks, are starting to be used outside of
biology, as their more general applicability becomes
more widely known. This has been particularly so in
anthropology,3–5 including the study of languages,6

written texts,7 folk tales,8 and cultural artifacts.9

There is much wider applicability, as well, as I am
arguing here.

The Different Types of Network
Mathematically, networks are connected graphs, with
nodes (representing the objects) connected by edges
(representing some form of relationship). The edges
may be undirected or directed, with the direction
indicating some sort of asymmetrical relationship
between the objects. There are now many types of
empirical graphs called ‘networks’, and therefore it is
important at the outset to place phylogenetic networks
clearly within this context.

Most networks are directly connected networks
based on empirical observations. In these networks,
labeled nodes are connected directly to each other, and
the edges (or arcs, if they have a specific direction)
represent some sort of observed connection between
the nodes. For example, in biology10 the organisms
within a local population may be genetically related
(e.g., parent to offspring), and this can be represented
by a directly connected network,11 although not all
of the organisms need to be connected to each other
(i.e., the network is not necessarily fully connected).
Alternatively, a protein interaction network has pro-
teins as the nodes, and the edges represent pairwise
interactions, although there is no specific direction to
these interactions. Some of the edges in these types of

Volume 4, Ju ly/August 2014 © 2014 John Wiley & Sons, Ltd. 297



Overview wires.wiley.com/widm

FIGURE 2 | Two phylogenetic networks of
the same dataset concerning the genotypes of
three species. There are three observed nodes
(labeled by the species name) in both cases
(filled circles), but five and one inferred nodes
(open circles), respectively. The edges
represent genetic similarity between the
species; the numbers count the observed
character differences between them. (The data
are available from Ref 14.)
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network may be inferred, which will then involve a
model-based network inference procedure,12 although
the labeled nodes usually remain observed rather than
inferred. In artificial neural networks, the inferred
edges connect the observed input and output nodes via
(unlabeled) hidden nodes.

Phylogenetic networks differ from these types of
networks,13 as shown in Figure 2. These graphs have
labeled leaf nodes representing the objects, internal
nodes that are usually unlabeled, and edges connect-
ing all the nodes (i.e., the network is fully connected).
The internal nodes are inferred rather than observed,
as also are all of the edges. However, the inferred
nodes are not hidden, as they are in an artificial neural
network. In phylogenetic analysis, two types of graphs
have been developed, although only one of them is
relevant to this overview: (1) rooted evolutionary net-
works, in which the internal nodes represent ancestors
of the leaf nodes, and the directed edges represent
pathways of inferred historical relationship; and (2)
unrooted affinity networks, in which the internal
nodes do not represent ancestors, and the undirected
edges represent similarity relationships among the leaf
nodes. In this overview, I am specifically concerned
with the second type, the similarity diagrams (in the
algorithmic literature, these have sometimes been
called ‘implicit phylogenetic networks’).

Relationship to Other Multivariate Methods
Multivariate datasets consist of a set of objects (real
or imagined) that have all been measured for the same
characteristics. Therefore, Q-mode analyses assume
that we are comparing like with like across the objects.
What creates that likeness is important for the inter-
pretation of the analysis outcome, but is not important
for the mathematical algorithm itself. In phylogenet-
ics, for example, the likeness is often assumed to have
been created by evolutionary homology, and the net-
works are interpreted in that light; but this assumption

is not necessary for other datasets. The cause of the
likeness may well vary from dataset to dataset, and
this is important for interpretation, but not otherwise,
provided that the dataset does, indeed, compare like
with like within each characteristic.

Multivariate data-summary analyses try to dis-
cover structure in the dataset without using any pre-
viously known structures in those data. Of the main
data-summary techniques, ordination creates a scat-
ter plot with each object as a point on the graph.
The relative distance between the points on the graph
summarizes the relationships among the objects. That
is, the ordination summarizes the multi-dimensional
neighborhoods of the different objects. This is use-
ful for showing continuous relationships, for example,
or showing several relationships simultaneously (e.g.,
one for each axis of the graph).

On the other hand, clustering tries to discover
groups in the data that are in some way similar. These
clusters may be hierarchically arranged (each group
nested within another group), in which case a tree
is used for display (i.e., a connected graph). This
tree has a root, so that the edges are directed away
from the root. If the clusters are not hierarchically
arranged, then the boundaries between groups can be
‘fuzzy’, so that each object can simultaneously be a
member of more than one cluster (associated with a
different probability for each cluster). The clusters can
be formed by agglomeration, where the objects are
sequentially added to a cluster, or division, where the
dataset is progressively divided into smaller clusters.
Clustering is useful for showing discrete relationships,
but it essentially only displays one relationship (the
one that relates to the grouping).

Phylogenetic networks (usually) proceed in the
same manner as an agglomerative hierarchical clus-
tering analysis, except that each object is allowed to
simultaneously be a member of many clusters (if nec-
essary). Instead of using a tree for display, a network
is used, which is basically a tree with reticulations.
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However, the network is unrooted, so that the edges
are undirected. Like hierarchical clustering, if there are
reasonably well-defined groups in the data then the
analysis will detect them, because each object will be
in only one group (or a small number of groups with
very unequal probabilities). Like fuzzy clustering, if
there are no strong cluster patterns then each object
will be equally part of many groups. Like ordination,
the relative position of the objects in the graph repre-
sents their neighborhood, so that several relationships
can be displayed simultaneously.

A phylogenetic network is a fully connected
graph, with labeled leaf nodes representing the
observed objects, unlabeled internal nodes that are
inferred by the analysis, and undirected edges connect-
ing the nodes, representing the inferred relationships
between those nodes. The length of the edges rep-
resents the amount of support in the data for the
relationship indicated by that edge. That is, objects
that are closely connected in the network are similar
to each other based on the observed characteristics,
and those that are further apart are progressively
more different from each other.

For the example network shown in Figure 1,
there is a large collection of internal nodes (in black)
with apparently little hierarchical structure, and yet
the leaf nodes (in color) do clearly show a degree of
large-scale geographical clustering (i.e., the different
colors are mostly grouped in unique places on the
graph). This indicates that the human genotypes are
similar to each other within each geographical area,
although there is little distinction between the Middle
Eastern (light green) and European (blue) genotypes.

As with any multivariate data-display technique,
the phylogenetic network algorithm involves only the
visualization of the data (i.e., constructing the graph).
There is one prior step that should be considered:
whether the descriptors need to be adjusted to make
them directly comparable, such as by normalization
(e.g., to a standard normal), standardization (e.g.,
range standardized), or transformation (e.g., log trans-
formed). This decision will be made on a case by case
basis, and it can determine which characteristics of the
data dominate the summary.

For phylogenetic networks, a summary of the
character data can be displayed directly (as shown,
for example, in Figure 2). However, for complex data
this is unwieldy, as it becomes impossible to dis-
play the network in only two or three dimensions
(i.e., on a piece of paper or computer screen). Under
these circumstances it is possible to visualize the data
by first calculating an association coefficient (e.g.,
resemblance, similarity) or distance (e.g., difference,
dissimilarity) among pairs of objects based on the

characteristics (as was done, for example, in Figure 1).
This similarity or distance summarizes the relation-
ships among the descriptors, and it is this summary
that is then displayed in the graph.

The simplest distance is the Hamming distance,
which is a count of the number of characteristics
that differ between the pairs of objects, followed by
the Manhattan distance, which is the sum of the
differences in attribute values between the pairs of
objects. These are often the best distances to use for
data mining, as they impose very little structure on
the data. However, far more sophisticated distances
have also been developed, many of which are quite
general but some of which have been devised for
specific purposes in different disciplines. The choice of
distance (or similarity) needs to be made on a case by
case basis.

There can be no missing data if the characters are
to be displayed directly in the network. If distances
are being used, then a distance measure is required
that correctly accounts for the missing data; otherwise,
there will be bias in the resulting network.

Limitations of Current Multivariate
Summaries
Ordination does a good job of displaying multivariate
neighborhoods, although in practice it is limited to
displaying the scatterplot using only two or three
dimensions. However, it has long been recognized
that, in spite of its popularity, there can be serious
distortions in the graphical display.15–17 In particular,
ordinations based on eigenanalysis (such as principal
components analysis, correspondence analysis, and
principal coordinates analysis) try to display the graph
using one more dimension than actually exists in
the data. For example, if there is a single dominant
gradient among the objects in the dataset, which
could therefore be displayed using only one graph
dimension, then in practice this will be spread over
two dimensions in the graph, instead, forming what
has been called a horseshoe or arch (see Figure 3(b)).
This artifact is seen quite frequently in the empirical
literature.

Hierarchical clustering does a good job of dis-
playing clustered relationships, although it effectively
displays only one set of relationships in its con-
nected graph. However, it has the limitation of exclu-
sivity, where each object is forced into one group
only. Nonhierarchical clustering can avoid this limita-
tion by recognizing over-lapping fuzzy clusters, where
group membership is probabilistic. However, this then
exhibits the limitation that it does not clearly show the
relationships between the clusters, especially if they do
not overlap.
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FIGURE 3 | The effect of a single-gradient dataset on multivariate data summaries. (a) The dataset, with 20 objects (Taxon 1–Taxon 20) and 24
characters, each of which has two possible states (A or C). (b) The principal components ordination of the data (not all of the objects are labeled). (c)
The UPGMA hierarchical clustering of the data. (d) The median network analysis of the data. (e) The neighbor-net analysis of the data.

Phylogenetic networks try to balance these var-
ious strengths and weaknesses.18 Such a network
can display clusters (as for hierarchical clustering),
if there are reasonably distinct groupings of the
objects, but otherwise it will display neighborhoods

(as for ordination), if there are more-or-less con-
tinuous relationships. It can simultaneously display
alternative clusterings (as for fuzzy clustering), if
there are several contradictory patterns in the data.
Thus, in many ways, phylogenetic networks are a
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compromise between the three alternative multivari-
ate data analyses. They have considerably fewer
restricting assumptions than do the other data sum-
maries, and so they can adapt themselves to different
data patterns.

As far as the dimensional distortions are con-
cerned, phylogenetic networks have not yet been
thoroughly evaluated. However, it is known that
different techniques respond in different ways to the
multivariate patterns. For instance, the neighbor-net
algorithm seems to be very effective for display-
ing one-dimensional data patterns, while median
networks are more effective for two-dimensional
patterns. As an example, Figure 3(a) shows a simple
dataset with one-dimensional patterns, where the
data patterns at the two ends of the gradient have
nothing in common. Figure 3(b) shows the horseshoe
effect produced by the principal components analy-
sis, which displays the gradient using two graphical
dimensions instead of one, falsely giving the impres-
sion that Taxon 1 and Taxon 20 are similar to each
other. Furthermore, the dots are not equally spaced,
which they should be given the continuous pattern
in the original data. Figure 3(c) shows that the hier-
archical clustering analysis groups the objects in a
somewhat arbitrary manner, first aggregating them
in adjacent pairs, but failing to maintain a symmet-
rical hierarchy with further aggregation, as would
be required for a gradient. Figure 3(d) shows the
median network, which correctly associates adjacent
objects while separating the two ends of the gradient.
Unfortunately, it fails to retain the symmetry of the
gradient, by superimposing two of the objects in the
network (Taxon 9 and Taxon 10). Figure 3(e) shows
the neighbor-net analysis, which correctly displays
the data as a single gradient. However, the latter
network is much more complex than is necessary,
since the dataset could be summarized graphically by
arranging the objects equally spaced along a single
straight line.

PHYLOGENETIC NETWORKS

There are many types of phylogenetic network,
including splits graphs, parsimony networks, and
reticulograms.19,20 These are based on somewhat
different mathematical criteria,21 but in practice the
algorithms will often produce similar networks for
any given dataset. For the purposes of data mining, it
seems that the family of methods that produce splits
graphs are the most promising; and so I will focus on
them in this overview. Thus, all the examples shown
here are different forms of splits graph.

Splits Graphs and Their Interpretation
A splits graph22–24 is actually a separation network,
in the sense that the edges separate the objects into
groups rather than connecting them together. In a
splits graph, each edge represents a bipartition of the
objects based on one or more characteristics. That
is, each edge splits the graph into two. This is a
straightforward generalization of a tree (as used in
hierarchical clustering), as each edge in a tree also
represents a bipartition of the objects. If an edge in
a tree is ‘cut’ (i.e., removed) then the two resulting
parts of the graph connect the objects forming each
of the two partitions (i.e., nonoverlapping subsets).
Each bipartition will be supported (in some way) by
the differing characteristics of the objects.

A splits graph shows the bipartitions that are
supported by the dataset, and only those bipartitions.
If there is no conflict in the data then each bipartition
is represented by a single edge in the graph; and if there
are contradictory patterns then the each bipartition is
represented by a set of parallel edges. Internal nodes
appear whenever edges or sets of edges intersect. The
edge lengths represent the relative amount of support
among the descriptors in the whole dataset for each of
the splits.

A simple example of how to interpret a splits
graph is shown in Figure 4. The data to be summarized
concern the five internationally released compilation
albums of the musical duo of Paul Simon & Art Gar-
funkel: Simon & Garfunkel’s Greatest Hits (1972);
The Simon & Garfunkel Collection (1981); The Con-
cert in Central Park (1982); The Definitive Simon &
Garfunkel (1992); and The Essential Simon & Gar-
funkel (2003). The data are the best-selling chart posi-
tions of these albums in eight different countries. The
objective is to summarize the similarities among the
countries with respect to how popular these albums
have been.

Figure 4(a) shows the neighbor-net analysis of
the data, which in this case is based on the Manhattan
distance. Note that the graph is to be interpreted as
showing relationships only along the edges of the
network. The graph is not very tree-like, indicating
that there are a number of incompatible patterns in
the dataset. However, the strongest patterns indi-
cate four weak clusters in the network: Sweden,
New Zealand+France, the Netherlands+ Japan, and
Germany+ the United Kingdom+Australia.

The remaining four parts of the figure highlight
some of the features of a splits graph. Figure 4(b)
illustrates a simple split of the data for which there
is no contradiction among the descriptors, so that it
requires only a single edge in the network. Indeed,
in this dataset each country has an edge of its
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FIGURE 4 | Phylogenetic network of the chart positions of five Simon & Garfunkel albums in eight countries. (a) The neighbor-net analysis based
on the Manhattan distance. (b) The split separating Sweden from the other countries. (c) The split (in red) separating Japan+Netherlands from the
other countries. (d) The split (in red) separating Netherlands+New Zealand+ France from the other countries. (e) The network distance (in bold)
separating New Zealand from the United Kingdom. (The data are available from Ref 25.)

own, representing its unique characteristics. How-
ever, Figure 4(c) and (d) shows two splits that are
incompatible with each other. In Figure 4(c) the
Netherlands is shown clustered with Japan while in
Figure 4(d) the Netherlands is shown clustered with
New Zealand+France. Both clusters can be displayed
in the network, but this requires each of these splits
to be represented by a set of parallel edges rather than

a single edge each. Figure 4(e) illustrates the way in
which the edge lengths relate to the original distance
or character data. The shortest pathlength between
objects (i.e., the sum of the edge lengths separating
them) should represent the distance in the original
dataset. Note that in a network there are many pos-
sible shortest paths between each pair, unlike in a tree
where there is only one shortest path.
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Types of Splits Graph
Conceptually, the simplest form of splits graph is a
median network.26,27 A median network is a splits
graph that displays all of the splits present in the
dataset, based on the descriptors themselves. That
is, an edge is added to the network for every split
formed by every character. If two (or more) characters
form the same split, then the relevant edge length is
increased, instead. An example is shown in Figure 2
(left), where three splits are represented by three sets
of parallel edges of differing length.

A median network can be produced only from
binary (two-state) data (e.g., presence–absence). The
equivalent for multi-state data is called a quasi-median
network.28–30 Strictly speaking, the latter is not a
splits graph because triangles can appear instead
of parallelograms, and splits graphs contain only
parallelograms and/or single edges.

The basic limitation of a median network is that
increasing complexity of the patterns in a dataset leads
directly to increasing complexity in the splits graph.
Real data are often far too complex to be displayed
in a median network, as the graph can produce
undisplayable hypercubes (and beyond a cube the
diagram is uninterpretable, anyway). So, the family of
splits-graph methods is formed by various approaches
to simplifying the network representation of the data,
thus forming subgraphs of the full median network.

For example, reduced-median networks,31

greedily reduced-median networks,27 local Buneman
graphs,32 and quartet window analysis33 all attempt
to remove some of the incompatibilities in the data
during the construction of the median network.
Median-joining networks28 do the same thing to
form a subgraph of the full quasi-median network.
Alternatively, pruned median networks34 and pruned
quasi-median networks35 attempt to thin the network
after it has been created (i.e., removing ‘unwanted’
edges).

Another approach has been to display only what
are called weakly compatible splits, which also form
a subgraph of the median-network hypercubes. These
can usually be displayed in a plane without edge
crossings (i.e., can be presented in two dimensions),
as illustrated in Figure 2 (right). If the algorithm
uses the character data then it is called parsimony
splits,36 while it is called split decomposition37 if
it is based on a distance measure. Unfortunately,
increasing complexity of the patterns in a dataset often
leads these two methods to fail, when they produce
an unresolved graph (called a star tree) instead of an
informative network.

The neighbor-net method38,39 was developed as
a compromise between the hypercubes produced by

median networks and the unresolved networks pro-
duced by split decomposition. It does this by produc-
ing what are called circular splits, which will always be
planar (i.e., can be displayed in two dimensions) with-
out being unresolved. It is based solely on distances
(not the character data). The graphs in Figures 1, 3,
and 4 were all produced by this algorithm.

It is also possible to construct splits graphs from
a collection of trees (i.e., the output of a hierarchi-
cal clustering algorithm). Consensus networks40–42

include in the network all of the splits that occur
in all of the trees, or (if preferred) only those splits
occurring in some threshold percentage of the trees.
Super-networks43,44 are similar but require only that
the trees have overlapping subsets of the objects,
rather than requiring all of the trees to have the same
set of objects.

In the empirical biological literature, the
reduced-median and median-joining networks are
the most popular for population-level studies, while
the neighbor-net algorithm is the most popular for
species-level studies. For more general data mining,
outside of biology, neighbor-net seems to offer the
greatest possibilities.

There are two computer programs that are
most commonly used for producing splits graphs
as phylogenetic networks: SplitsTree45,46 (http://www.
splitstree.org/), and Network47 (http://www.fluxus-
engineering.com/sharenet.htm).

EMPIRICAL EXAMPLES

In this section, I provide six examples of the use of phy-
logenetic networks to summarize multivariate data.
There is a wide range of examples, which illustrate
the diversity of application of these networks, as well
as different possible forms of analysis (i.e., different
combinations of standardization, choice of similarity
measure, and network algorithm). All of the networks
were produced with the SplitsTree v.4.11.3 program,
except for Figure 8 which was produced with Network
v.4.6.1.1.

Type 1 Interferons
The first example is a biological one, although it is a
somewhat unusual use of phylogenetic networks, as
they were originally intended to be used for studying
the relationships among species rather than among
protein classes.

It concerns the DNA sequences of 231 type-I
interferon genes, taken from the genomes of various
mammal species. Interferons are proteins that function
as part of a mammal’s immune system, helping to
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protect the animals from disease-causing pathogens.
These genes code for at least nine different classes
(or subtypes) within the type-I interferon family, each
class having its own molecular function within the
animals’ immune systems. Each mammal species has
one or more gene copies of each of these type-I
interferon classes (sometimes plus some pseudogenes).
So, in the data analysis each object (or leaf node
in the network) represents one gene copy, with the
characteristic descriptors being the amino acids of
their aligned DNA sequences.

The phylogenetic network of these data
(Figure 5) shows that these nine interferon classes
cluster quite clearly. That is, while each mammal
species has its own unique copies of the genes, the
protein classes are still recognizably distinct—for
example, a 𝛽 gene is still recognizably a 𝛽 gene no
matter which species it is in. Nevertheless, some
of these subtypes have considerable within-class
variation in their protein sequences, indicating the
variability that exists both within and between the
different mammal species.

The relationships between the clusters are
indistinct in most cases, but there is nevertheless
a well-supported bipartition associated with each

cluster (as indicated by the different colors). The only
exception concerns the splits separating the 𝜔 and 𝜏

classes, which are not as large as that for the other
classes. Indeed, it is usually considered that, biologi-
cally, the 𝜏 class is actually a subset of the 𝜔 class.

So, this is an example where the phylogenetic
network indicates a strongly clustered pattern within
the dataset. This was important in the published
data analysis in relation to the class labeled 𝜇. This
had previously been recognized as an indeterminate
subtype provisionally called 𝛼𝜔, but the network
analysis shows that it is quite distinct from both
subtype 𝛼 and subtype 𝜔, and thus is worthy of
recognition in its own right. The data mining in this
case thus involved an important piece of knowledge
discovery.

FIFA World Cup Soccer
We can now move on to the uses of phylogenetic
networks outside biology.

The Fédération Internationale de Football Asso-
ciation (FIFA) World Cup™ soccer competition has
been held every 4 years since 1930 (except 1942 and
1946). The finals competition is reported to be the
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most widely viewed sporting event in the world,
surpassing even the Olympic Games. The number
of national teams accepted into the finals has varied
from 13 to the current 32; and at the end of the
finals FIFA provides an ordering of these teams based
on their success in the finals series. In the analysis
presented here, each national team is an object, and
the 19 characteristics are the ranking results of each
World Cup competition.

The FIFA rank-order data for each Cup were
range-scaled to vary from 1 (last in the order) to 2 (first
in the order), to deal with the varying number of final-
ists (i.e., range standardization of the data). Absence
from the finals was coded as 0, which could be due to
not competing that year, or to competing but not qual-
ifying for the finals (only the Brazilian team has made
it to the finals every time). Adjustments were made
to deal with changes in the political entities that the
teams represent (i.e., the breakup of Czechoslovakia,
Germany, Yugoslavia, and the USSR).

The resulting phylogenetic network (Figure 6) is
not very tree-like, and there are no clear clusters of
countries based on their competition success. How-
ever, the data mining does reveal neighborhoods of
similarity among the countries, so that some countries
have had somewhat similar degrees of success in the
World Cup finals. In particular, I have colored two
of the largest splits in the data red and blue. These
splits break the data into four neighborhoods (rather
than clusters), and I have colored their leaf labels dif-
ferently. In two of the neighborhoods there are also
recognizable subsets, which have been given different
color shades.

The black-colored neighborhood contains those
teams that have usually been unsuccessful when they
have appeared in the finals (e.g., they have been
eliminated in the first round). There are two subsets
here (colored black and gray), with the teams in the
gray subset appearing in the finals mainly from 1990
to 2002. The purple neighborhood contains those
teams who have usually been moderately successful
whenever they have qualified for the finals (e.g.,
they have made it to the second round). The orange
neighborhood recognizes those teams whose finals
results have varied from very good to very poor.

The green neighborhood contains those teams
who have been successful on most of those occasions
when they have appeared in the finals (e.g., they have
made it to the quarter-finals). Note that the most
successful teams (Brazil, Germany, Italy) do not stand
out within this group—this is a by-product of the
data standardization. There are also two subsets here
(colored green and lime green), with the lime-green

subset all making it to the finals in 1970, 1994, and
1998, but otherwise appearing only sporadically.

So, this is an example where the phylogenetic
network indicates neighborhoods rather than clusters
within the dataset. There are no strong clusters within
the World Cup results because no group of teams
has dominated (unlike some other sports, such as ice
hockey). For example, the team who has won most
often, Brazil, has also on occasion done poorly, and
the most consistent team, Germany, has not won as
often as the Brazilians.

Opera House Acoustics
There are many opera houses and concert halls
in the world, intended for acoustic (i.e., nonampli-
fied) orchestral and vocal performances. These per-
formance halls vary considerably in their perceived
acoustic desirability. For example, Beranek50 provides
a ranking of many of these halls, based on the judg-
ment of professional performers and music lovers.
However, the architectural design of such halls is based
on measured physical quantities involving the over-
all dimensions, reverberation time, sound distribution,
and sound diffusion. It is therefore of interest to ask
to what extent these acoustic parameters are reflected
in the human subjective judgment about quality.

In the analysis presented here, each of the 52
performance halls is an object, and the 10 charac-
teristics are measurements of some of their acoustic
variables. Once again, the resulting phylogenetic net-
work (Figure 7) is not very tree-like but does reveal
neighborhoods of multivariate similarity among the
performance halls. That is, halls near each other in
the network have similar acoustic properties. How-
ever, the interest here lies in comparing these acoustic
characteristics to the subjective judgments of the audi-
ence and performers.

The top 11 ranked halls are highlighted in the
network (in red), showing that most of them are in
the same network neighborhood. That is, the halls
that are preferred by the performers and audiences
mostly have similar acoustic qualities. Indeed, all of
the great concert halls are shoe-box shaped, with the
exception of the Teatro Colón, which is horse-shoe
shaped, and Cardiff Hall, which is a surround hall.
Of these 11 halls, eight were built before 1908, which
shows you how little we have learned recently about
designing concert halls.

More interestingly, however, the network indi-
cates another set of eight halls that are in the same net-
work neighborhood (colored purple). As a technical
note, there are no splits in the network that uniquely
separate the red and purple labels into different parti-
tions. There are three large splits that include some of
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the red and purple labels in both partitions, and one
small split that separates the purple halls from all of
the other halls.

This network arrangement means that the
purple-colored halls have similar acoustic qualities
to the top-ranked halls (in red), but they have much
lower rankings, which means that they are subjectively
detected as being less desirable in terms of acoustic
performances. Apparently, there is more that meets
the ear than can be measured by acoustic instruments.
Thus, in this case the data mining reveals a fascinating
phenomenon, which is worthy of more detailed study.

Textual Analysis of Genesis 1:3
Textual analysis is an interesting recent use of phylo-
genetic networks. Stemmatology is the discipline that
attempts to reconstruct the transmission history of a
written text on the basis of relationships between the
various extant versions (e.g., manuscripts or print-
ings). That is, variations in word order, spelling, and
punctuation can reveal which editions of particular
books are likely to be copies of which other edi-
tions. In the analysis presented here, the objects are
26 English-language versions of the Christian Bible,
published from 1382 to 2011. The characteristics are
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the words and punctuation of the third sentence of the
Old Testament (Genesis 1:3).

To vary things, this time I have used the
reduced-median network algorithm rather than the
neighbor-net algorithm to produce the phylogenetic
network (Figure 8). This does not produce a planar
graph in this particular case, but instead involves
a series of interconnected cubes that represent the
various bipartitions of the data. It is also a more
condensed summary compared to that produced by
the neighbor-net algorithm (with Hamming distance).

In this example, the data mining does not even
reveal clear neighborhoods in the network, let alone
clusters. There is a general separation of the older
Genesis texts on the left of the graph and the more
recent texts on the right, indicating the gradual change
in English through the centuries. However, there are
no clear relationships to known copying between
versions of the Bible.

Historically, we would expect the Tyndale Bible,
Coverdale Bible, Matthew Bible, and Great Bible texts
to be closely related, but the Great Bible seems not to
fit this expectation. Additionally, we would expect a
similarity between the Geneva Bible and the Bishop’s
Bible, which is also not reflected in the study sentence;

nor is the acknowledged debt of the King James
Version to the Tyndale Bible.

However, the fact that the Wycliffe Bible
and Later Wycliffe were written in Middle English
rather than Modern English is clear from their
distant network relationship to the other texts;
and the close historical relationship of the Chal-
loner Revision and the Douay-Rheims Bible is
also clear.

Several texts show isolated relationships. The
Knox Bible, for example, is unique among the mod-
ern texts in being taken from the Latin Vulgate rather
than the original Hebrew text, while the Common
English Bible is unusual in trying to balance two trans-
lation principles (Dynamic Equivalence and Formal
Equivalence) rather than using only one. On the other
hand, the New International Version is clearly a very
traditional version of the text, given its relationships
as shown in the graph, which perhaps explains its
modern popularity (it is apparently the most widely
used current Bible).

The close association of the Good News Bible
with Young’s Literal Translation is interesting, given
that the former is an (often criticized) free paraphrase
of the original Hebrew text while the latter is a literal
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1 (Webster’s Bible 1833, English Revised Version 1885, American Standard Version 1901, King James Version 1611, Blayney Revision 1769), and two
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Internet.

translation of that same text—you can’t get more
different translation principles.

Single-Malt Scotch Whiskies
I have been reliably told, by people with extensive
experience of the matter, that each and every Scotch
single-malt whiskey is unique, and that therefore per-
sonal preference for one over another is entirely jus-
tified. This claim can be assessed by comparing the
whiskies based on quantitative measurement of their
various sensory characteristics. In the analysis pre-
sented here, the objects are the products of 109 whisky
distilleries, from throughout Scotland. The 68 char-
acteristics include the standard beverage-assessment
features: nose (12), color (14), body (8), palate (15),
and finish (19).

A weighted similarity measure was used, to give
the five types of characteristic equal influence (note
that the 68 characteristics are not equally distributed
among the five assessment features). The similarity
coefficient ignores so-called negative matches, so that
only shared characteristics generate similarity (not
shared lack of a characteristic).

The network is not tree-like (Figure 9), although
some neighborhoods are indicated. This contrasts
with the results of the agglomerative clustering analy-
sis performed by Lapointe and Legendre,52 who pro-
duced a classification of the whiskies based on the
clusters that they detected. They concluded that there

is, indeed, a weak but detectable relationship between
their classification and the geographical location of
the various distilleries. The network calls into ques-
tion any such classification scheme, and there is very
little evidence of geographical patterns.

This example contrasts the results of clustering
and networks for data mining. The clustering puts the
objects into exclusive groups irrespective of whether
such groups exist, whereas the network allows the
objects to be members of many groups, if that better
represents the data patterns. In this case, where there
is little evidence of grouping, the network delivers a
more reasonable summary of the multivariate data.

Thai Buddha Images
Anthropological data are very likely to involve hori-
zontal flows of historical information (between con-
temporaneous cultures) as well as vertical ones (from
generation to generation within cultures). One way
to assess the balance between these flows is to ana-
lyze the data using a phylogenetic network—if the
network method produces a tree-like diagram then
we can safely conclude that vertical descent has had
a larger influence on the transmission of the cultural
information than has horizontal transfer.

In the analysis presented here, the objects are
42 cast metal Buddha statues from seven widely
recognized chronological culture-historical groups in
Thailand. The characteristics are 17 morphological
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FIGURE 9 | A phylogenetic network of various sensory characteristics of single-malt Scotch whiskies. The network was constructed using the
neighbor-net algorithm, with the weighted Bray-Curtis similarity which ignores so-called negative matches. The label colors represent different
geographical regions within Scotland. (The data are available from Ref 52.)

features of the statues’ heads. Clearly, the network is
not very tree-like (Figure 10), and so we can infer that
there has been a considerable influence of horizontal
flow of cultural information, as well as the vertical
flow through time.

There are, however, distinct temporal patterns
in the network. The samples from the earliest three
periods (Dvaravati, Khmer, Thirteenth Century) are
at the right-hand side of the network, while the
samples from the next period (Sukhothai) are at the
bottom-left. This implies that a large stylistic change
occurred between the Thirteenth Century and the
Sukhothai periods. Furthermore, the Khmer period

style is rather distinct from that of the immediately
preceding period (Dvaravati) and the immediately
following one (Thirteenth Century), which are them-
selves not as distinct. That is, there was no stylistic
change between the first two periods, but there was
a small change to the next period, and then a large
change to the following period.

The samples from the latest two periods (Lan
Na, Late Ayutthaya) are gathered mainly in two
locations, at the bottom of the graph and at the
top-left. This indicates that, although there are two
distinct styles, they do not correlate with the two
culture-historical periods. The samples from the Early
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Ayutthaya period are scattered throughout the top
and left of the network, suggesting that this is an
intermediate style between that of the immediately
previous Sukhothai period and the earliest three peri-
ods, rather than being an innovative style leading to
the succeeding Lan Na period.

In this case, the data mining has detected some
patterns that are not strictly historical ones, for which
we need to look for some other explanation. The
knowledge discovery in this case is the realization that
we need to search for further information, because
things are not as simple as they might be.

CONCLUSION

Worthwhile methods of data mining will lead to
knowledge discovery, and the graphical displays
associated with EDA are often an important compo-
nent of data mining. In this overview, I have shown
that phylogenetic networks succeed in the objective of

providing effective graphical summaries of multivari-
ate data. They combine several of the good features
of previous multivariate data-summary techniques,
including ordination, hierarchical clustering, and
fuzzy clustering. Moreover, they avoid some of the
known mathematical limitations of these alternative
methods, which are not always realistic. Phylogenetic
networks thus allow multiple patterns to be displayed
in a connected graph in a manner that effectively
summarizes the information content of any multivari-
ate dataset. They were developed in the biological
field of phylogenetics, but they exhibit much wider
applicability than this. Phylogenetic networks are fast
and relatively easy to calculate, which makes them
ideal as a tool for EDA.

I have provided an overview of the field, with
particular reference to the use of splits graphs. There
are various types of splits graph, which summarize
the multivariate data in different ways, and the
neighbor-net graph seems to be the most generally
useful of the available algorithms. I have presented
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example analyses based on a wide variety of datasets,
including biology, architecture, archeology, sports,
stemmatology, music, and gastronomy. My intention

has been to encourage the more widespread use of
these networks whenever a multivariate summary of
a dataset is required.
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